- Neuroprotective and behavioral effects of the selective metabotropic glutamate mGlu(1) receptor antagonist BAY 36-7620.
Neuroprotective and behavioral effects of the selective metabotropic glutamate mGlu(1) receptor antagonist BAY 36-7620.
This study characterized the neuroprotective and behavioral effects of (3aS,6aS)-6a-naphtalen-2-ylmethyl-5-methyliden-hexahydro-cyclopenta[c]furan-1-on (BAY 36-7620), a novel, selective and systemically active metabotropic glutamate (mGlu)(1) receptor antagonist. In the rat, neuroprotective effects were obtained in the acute subdural hematoma model (efficacy of 40-50% at 0.01 and 0.03 mg/kg/h, i.v. infusion during the 4 h following surgery); whereas in the middle cerebral artery occlusion model, a trend for a neuroprotective effect was obtained after triple i.v. bolus application of 0.03-3 mg/kg, given immediately, 2 and 4 h after occlusion. Hypothermic effects were mild and only obtained at doses which were considerably higher than those at which maximal neuroprotective efficacy was obtained, indicating that the neuroprotective effects are not a consequence of hypothermia. BAY 36-7620 protected against pentylenetetrazole-induced convulsions in the mouse (MED: 10 mg/kg, i.v.). As assessed in rats, BAY 36-7620 was devoid of the typical side-effects of the ionotropic glutamate (iGlu) receptor antagonists phencyclidine and (+)-5-methyl-10,11-dihydroxy-5H-dibenzo(a,d)cyclohepten-5,10-imine (MK-801). Thus, BAY 36-7620 did not disrupt sensorimotor gating, induce phencyclidine-like discriminative effects or stereotypical behavior, or facilitate intracranial self-stimulation behavior. Although behavioral stereotypies and disruption of sensorimotor gating induced by amphetamine or apomorphine were not affected by BAY 36-7620, the compound attenuated some behavioral effects of iGlu receptor antagonists, such as excessive grooming or licking, and their facilitation of intracranial self-stimulation behavior. It is concluded that mGlu(1) receptor antagonism results in neuroprotective and anticonvulsive effects in the absence of the typical side-effects resulting from antagonism of iGlu receptors.