跳转至内容
Merck
CN
  • Mannanoligosaccharides as a Carbon Source in Biofloc Boost Dietary Plant Protein and Water Quality, Growth, Immunity and Aeromonas hydrophila Resistance in Nile Tilapia (Oreochromis niloticus).

Mannanoligosaccharides as a Carbon Source in Biofloc Boost Dietary Plant Protein and Water Quality, Growth, Immunity and Aeromonas hydrophila Resistance in Nile Tilapia (Oreochromis niloticus).

Animals : an open access journal from MDPI (2020-09-27)
Asmaa T Y Kishawy, Alaa H Sewid, Hend S Nada, Mohamed A Kamel, Shefaa A M El-Mandrawy, Taghrid M N Abdelhakim, Abd Elhakeem I El-Murr, Nihal El Nahhas, Wael N Hozzein, Doaa Ibrahim
摘要

The aim of the present study was to evaluate mannan oligosaccharides (MOS) or glycerol (GLY) as a carbon source on biofloc systems of Nile tilapia (O. niloticus) juveniles. Fish (n = 750) were reared in open flow (Controls) or biofloc systems (B-GLY and B-MOS) fed with a plant or fish protein source over a period of twelve weeks. Total ammonia nitrogen and nitrate decreased in the biofloc groups, while biofloc volume increased in B-MOS. Compared to the controls, B-MOS and B-GLY exhibited higher weight gain and improved feed conversion, irrespectively of the diet. Serum level of C-reactive protein was reduced, while IgM and lysozyme activity was higher in the B-MOS fish, compared to other groups. Intestinal Bacillus spp. count was increased, whereas Vibrio, Aeromonas and Pseudomonas spp. counts decreased in B-MOS reared groups, compared to the other groups. The proinflammatory cytokine (IL-8 and IFN-γ) transcript expression was upregulated in B-MOS more than B-GLY reared groups. Compared to the controls, the virulence of Aeromonas hydrophila was decreased in the B-MOS and B-GLY groups. The results indicate several benefits of using MOS as a carbon source in a biofloc Nile tilapia system; a cost benefit analysis is required to assess the economic viability of this.

材料
货号
品牌
产品描述

Millipore
TCBS 琼脂, NutriSelect® Plus, suitable for microbiology
Millipore
假单胞分离琼脂, NutriSelect® Plus, suitable for microbiology, for primary isolation and identification of Pseudomonas