跳转至内容
Merck
CN
  • Transcriptome Analysis and Metabolic Profiling of Green and Red Mizuna (Brassica rapa L. var. japonica).

Transcriptome Analysis and Metabolic Profiling of Green and Red Mizuna (Brassica rapa L. var. japonica).

Foods (Basel, Switzerland) (2020-08-14)
Chang Ha Park, Sun Ju Bong, Chan Ju Lim, Jae Kwang Kim, Sang Un Park
摘要

Mizuna (Brassica rapa L. var. japonica), a member of the family Brassicaceae, is rich in various health-beneficial phytochemicals, such as glucosinolates, phenolics, and anthocyanins. However, few studies have been conducted on genes associated with metabolic traits in mizuna. Thus, this study provides a better insight into the metabolic differences between green and red mizuna via the integration of transcriptome and metabolome analyses. A mizuna RNAseq analysis dataset showed 257 differentially expressed unigenes (DEGs) with a false discovery rate (FDR) of <0.05. These DEGs included the biosynthesis genes of secondary metabolites, such as anthocyanins, glucosinolates, and phenolics. Particularly, the expression of aliphatic glucosinolate biosynthetic genes was higher in the green cultivar. In contrast, the expression of most genes related to indolic glucosinolates, phenylpropanoids, and flavonoids was higher in the red cultivar. Furthermore, the metabolic analysis showed that 14 glucosinolates, 12 anthocyanins, five phenolics, and two organic acids were detected in both cultivars. The anthocyanin levels were higher in red than in green mizuna, while the glucosinolate levels were higher in green than in red mizuna. Consistent with the results of phytochemical analyses, the transcriptome data revealed that the expression levels of the phenylpropanoid and flavonoid biosynthesis genes were significantly higher in red mizuna, while those of the glucosinolate biosynthetic genes were significantly upregulated in green mizuna. A total of 43 metabolites, such as amino acids, carbohydrates, tricarboxylic acid (TCA) cycle intermediates, organic acids, and amines, was identified and quantified in both cultivars using gas chromatography coupled with time-of-flight mass spectrometry (GC-TOFMS). Among the identified metabolites, sucrose was positively correlated with anthocyanins, as previously reported.

材料
货号
品牌
产品描述

Sigma-Aldrich
香草醛, ReagentPlus®, 99%