- Mutual comparative analysis: a new topography-guided custom ablation protocol referencing subjective refraction to modify corneal topographic data.
Mutual comparative analysis: a new topography-guided custom ablation protocol referencing subjective refraction to modify corneal topographic data.
Several planning algorithms have been developed for topography-guided custom ablation treatment (T-CAT), but each has its own deficiencies. The purpose of this study is to demonstrate the potential of a novel mutual comparative analysis (MCA) informed by manifest refraction and corneal topographic data and the patient's subjective perception in correcting ametropia. This retrospective review included patients with significant preoperative differences in the power or axis of astigmatism according to the manifest refraction and corneal topographic data (power > 0.75 D and/or axis > 10°). T-CAT planning was designed using MCA. Follow-ups were conducted for at least 6 months. Seventy-nine patients (121 eyes) were included. The mean preoperative deviation in the astigmatic power and axis were 0.72 ± 0.43 D and 20.18 ± 23.68°, respectively. The average oculus residual astigmatism (ORA) was 0.81 ± 0.32 D (range: 0.08-1.66 D). Six months postoperatively, the mean spherical equivalent refraction was 0.04 ± 0.42 D, and the mean cylinder was - 0.27 ± 0.24 D. The mean efficacy and safety indices were 1.10 and 1.15, respectively. The uncorrected distance visual acuity in 92% of the eyes was the same or better than the corrected distance visual acuity. The angle of error was ±5° in 61% of eyes and ± 15° in 84% of eyes. Residual astigmatism was ≤0.5 D in 91% of eyes. Optical quality and photopic contrast sensitivity did not change significantly (p > 0.05), and the scotopic contrast sensitivity decreased at 3, 6, and 12 cpd (p < 0.05). The vertical coma and horizontal coma of the anterior corneal surface significantly decreased postoperatively but increased during follow-up. The MCA demonstrated safety, efficacy, accuracy, predictability, and stability and can be used as a complementary and feasible method for T-CAT.