跳转至内容
Merck
CN

VTA Glutamatergic Neurons Mediate Innate Defensive Behaviors.

Neuron (2020-05-23)
M Flavia Barbano, Hui-Ling Wang, Shiliang Zhang, Jorge Miranda-Barrientos, David J Estrin, Almaris Figueroa-González, Bing Liu, David J Barker, Marisela Morales
摘要

The ventral tegmental area (VTA) has dopamine, GABA, and glutamate neurons, which have been implicated in reward and aversion. Here, we determined whether VTA-glutamate or -GABA neurons play a role in innate defensive behavior. By VTA cell-type-specific genetic ablation, we found that ablation of glutamate, but not GABA, neurons abolishes escape behavior in response to threatening stimuli. We found that escape behavior is also decreased by chemogenetic inhibition of VTA-glutamate neurons and detected increases in activity in VTA-glutamate neurons in response to the threatening stimuli. By ultrastructural and electrophysiological analysis, we established that VTA-glutamate neurons receive a major monosynaptic glutamatergic input from the lateral hypothalamic area (LHA) and found that photoinhibition of this input decreases escape responses to threatening stimuli. These findings indicate that VTA-glutamate neurons are activated by and required for innate defensive responses and that information on threatening stimuli to VTA-glutamate neurons is relayed by LHA-glutamate neurons.

材料
货号
品牌
产品描述

Sigma-Aldrich
抗酪氨酸羟化酶抗体, Chemicon®, from rabbit
Sigma-Aldrich
抗酪氨酸羟化酶抗体,克隆LNC1, ascites fluid, clone LNC1, Chemicon®
Sigma-Aldrich
抗酪氨酸羟化酶抗体, Chemicon®, from sheep
Sigma-Aldrich
柠檬油, cold-pressed, California origin, FG
Sigma-Aldrich
抗荧光金抗体, from rabbit