跳转至内容
Merck
CN
  • Differential kidney proximal tubule cell responses to protein overload by albumin and its ligands.

Differential kidney proximal tubule cell responses to protein overload by albumin and its ligands.

American journal of physiology. Renal physiology (2020-02-19)
Kimberly R Long, Youssef Rbaibi, Megan L Gliozzi, Qidong Ren, Ora A Weisz
摘要

Albuminuria is frequently associated with proximal tubule (PT) cytotoxicity that can feed back to cause glomerular damage and exacerbate kidney disease. PT cells express megalin and cubilin receptors that bind to and internalize albumin over a broad concentration range. How the exposure to high concentrations of albumin leads to PT cytotoxicity remains unclear. Fatty acids and other ligands bound to albumin are known to trigger production of reactive oxygen species (ROS) that impair PT function. Alternatively or in addition, uptake of high concentrations of albumin may overload the endocytic pathway and elicit downstream responses. Here, we used a well-differentiated PT cell culture model with high endocytic capacity to dissect the effects of albumin versus its ligands on endocytic uptake and degradation of albumin, production of ROS, and cell viability. Cellular responses differed dramatically, depending on the preparation of albumin tested. Knockdown of megalin or cubilin failed to prevent ROS production mediated by albumin ligands, suggesting that receptor-mediated internalization of albumin was not necessary to trigger cellular responses to albumin ligands. Moreover, albumin induced cytotoxic responses when added to the basolateral surface of PT cells. Whereas overnight incubation with high concentrations of fatty acid-free albumin had no overt effects on cell function or viability, lysosomal degradation kinetics were slowed upon longer exposure, consistent with overload of the PT endocytic/degradative pathway. Together, the results of our study demonstrate that the PT responds independently to albumin and to its ligands and suggest that the consequences of albumin overload in vivo may be dependent on metabolic state.

材料
货号
品牌
产品描述

Sigma-Aldrich
人血清, from human male AB plasma, USA origin, sterile-filtered
Sigma-Aldrich
杜氏磷酸盐缓冲盐水, With MgCl2 and CaCl2, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
棕榈酸钠, ≥98.5%
Sigma-Aldrich
油酸, ≥99% (GC)
Sigma-Aldrich
MISSION® esiRNA, targeting human LRP2