跳转至内容
Merck
CN
  • Biased M1-muscarinic-receptor-mutant mice inform the design of next-generation drugs.

Biased M1-muscarinic-receptor-mutant mice inform the design of next-generation drugs.

Nature chemical biology (2020-02-23)
Sophie J Bradley, Colin Molloy, Paulina Valuskova, Louis Dwomoh, Miriam Scarpa, Mario Rossi, Lisa Finlayson, Kjell A Svensson, Eyassu Chernet, Vanessa N Barth, Karolina Gherbi, David A Sykes, Caroline A Wilson, Rajendra Mistry, Patrick M Sexton, Arthur Christopoulos, Adrian J Mogg, Elizabeth M Rosethorne, Shuzo Sakata, R A John Challiss, Lisa M Broad, Andrew B Tobin
摘要

Cholinesterase inhibitors, the current frontline symptomatic treatment for Alzheimer's disease (AD), are associated with low efficacy and adverse effects. M1 muscarinic acetylcholine receptors (M1 mAChRs) represent a potential alternate therapeutic target; however, drug discovery programs focused on this G protein-coupled receptor (GPCR) have failed, largely due to cholinergic adverse responses. Employing novel chemogenetic and phosphorylation-deficient, G protein-biased, mouse models, paired with a toolbox of probe molecules, we establish previously unappreciated pharmacologically targetable M1 mAChR neurological processes, including anxiety-like behaviors and hyper-locomotion. By mapping the upstream signaling pathways regulating these responses, we determine the importance of receptor phosphorylation-dependent signaling in driving clinically relevant outcomes and in controlling adverse effects including 'epileptic-like' seizures. We conclude that M1 mAChR ligands that promote receptor phosphorylation-dependent signaling would protect against cholinergic adverse effects in addition to driving beneficial responses such as learning and memory and anxiolytic behavior relevant for the treatment of AD.