跳转至内容

Dear Customer:

The current international situation is complex and volatile, and uncertain tariff policies may potentially impact our product prices. Given these uncertainties, we value your understanding regarding order-related matters.

If you decide to place an order during this period, we reserve the right to adjust the price based on the evolving situation. We understand that market changes may cause inconvenience. We will negotiate with you if there’s a significant price fluctuation due to tariff policy changes before the order’s actual delivery, and in such cases we may adjust or cancel the order as necessary.

Merck
CN
  • Antifatigue Effects of Antrodia cinnamomea Cultured Mycelium via Modulation of Oxidative Stress Signaling in a Mouse Model.

Antifatigue Effects of Antrodia cinnamomea Cultured Mycelium via Modulation of Oxidative Stress Signaling in a Mouse Model.

BioMed research international (2017-04-21)
Yange Liu, Lanzhou Li, Shengshu An, Yuanzhu Zhang, Shiwei Feng, Lu Zhao, Lirong Teng, Di Wang
摘要

Antrodia cinnamomea, a folk medicinal mushroom, has numerous biological effects. In this study, we aim to assess whether the antifatigue effects of A. cinnamomea mycelia (AC) and its underlying mechanisms are related to oxidative stress signaling using behavioral mouse models and biochemical indices detection. Mice were orally treated with AC at doses of 0.1, 0.3, and 0.9 g/kg for three weeks. AC had no effect on the spontaneous activities of mice indicating its safety on central nervous system. Furthermore, results obtained from weight-loaded forced swimming test, rotary rod test, and exhausted running test confirmed that AC significantly enhanced exercise tolerance of mice. Biochemical indices levels showed that these effects were closely correlated with inhibiting the depletion of glycogen and adenosine triphosphate stores, regulating oxidative stress-related parameters (superoxide dismutase, glutathione peroxidase, reactive oxygen species, and malondialdehyde) in serum, skeletal muscle, and liver of mice. Moreover, the effects of AC may be related with its regulation on the activations of AMP-activated protein kinase, protein kinase B, and mammalian target of rapamycin in liver and skeletal muscle of mice. Altogether, our data suggest that the antifatigue properties of AC may be one such modulation mechanism via oxidative stress-related signaling in mice.

材料
货号
品牌
产品描述

Sigma-Aldrich
抗磷酸化mTOR(Ser2448)抗体, Upstate®, from rabbit
价格与库存信息目前不能提供
Sigma-Aldrich
Anti-phospho-Akt (Thr308) Antibody, from rabbit
价格与库存信息目前不能提供