跳转至内容
Merck
CN
  • Insulin Stimulates PI3K/AKT and Cell Adhesion to Promote the Survival of Individualized Human Embryonic Stem Cells.

Insulin Stimulates PI3K/AKT and Cell Adhesion to Promote the Survival of Individualized Human Embryonic Stem Cells.

Stem cells (Dayton, Ohio) (2019-04-26)
Carlos Godoy-Parejo, Chunhao Deng, Weiwei Liu, Guokai Chen
摘要

Insulin is present in most maintenance media for human embryonic stem cells (hESCs), but little is known about its essential role in the cell survival of individualized cells during passage. In this article, we show that insulin suppresses caspase cleavage and apoptosis after dissociation. Insulin activates insulin-like growth factor (IGF) receptor and PI3K/AKT cascade to promote cell survival and its function is independent of rho-associated protein kinase regulation. During niche reformation after passaging, insulin activates integrin that is essential for cell survival. IGF receptor colocalizes with focal adhesion complex and stimulates protein phosphorylation involved in focal adhesion formation. Insulin promotes cell spreading on matrigel-coated surfaces and suppresses myosin light chain phosphorylation. Further study showed that insulin is also required for the cell survival on E-cadherin coated surface and in suspension, indicating its essential role in cell-cell adhesion. This work highlights insulin's complex roles in signal transduction and niche re-establishment in hESCs. Stem Cells 2019;37:1030-1041.

材料
货号
品牌
产品描述

Sigma-Aldrich
Anti-Paxillin Antibody, clone 5H11, clone 5H11, Upstate®, from mouse
Sigma-Aldrich
单克隆抗--肌球蛋白(轻链 20 kDa) 小鼠抗, clone MY-21, ascites fluid
Sigma-Aldrich
Anti-Integrin β1 Antibody, phospho-specific [Thr788/Thr789], Chemicon®, from rabbit