- Molecular mechanism for growth suppression of human hepatocellular carcinoma cells by acyclic retinoid.
Molecular mechanism for growth suppression of human hepatocellular carcinoma cells by acyclic retinoid.
We have reported previously that acyclic retinoid, a synthetic retinoid X receptor alpha (RXRalpha)-ligand, suppresses the development of hepatocellular carcinoma (HCC) in patients with chronic liver disease. On the other hand, HCCs become refractory to physiological concentrations of the natural RXRalpha-ligand, 9-cis retinoic acid (9cRA), due to extracellular signal-regulated kinase (Erk) 1/2-mediated phosphorylation and inactivation of RXRalpha. Here, we show that acyclic retinoid restores the function of RXRalpha in human HCC-derived HuH7 cells by inactivating the Ras-Erk 1/2 signaling system, thereby dephosphorylating RXRalpha. In contrast, 9cRA failed to suppress phosphoErk 1/2 levels and subsequent RXRalpha phosphorylation. Although 9cRA also suppressed Ras activity, it simultaneously down-regulated mitogen-activated protein kinase phosphatase-1, an enzyme that inactivates Erk, thereby leaving the phosphorylation status of Erk unchanged. A combination of 9cRA (a potent ligand) and acyclic retinoid (a weak ligand preventing phosphorylation) resulted in a marked cooperation in transactivation via the RXR-response element and in inhibiting the proliferation of HuH7 cells. These events provide a novel molecular basis for the antitumor activity of acyclic retinoid against HCC.