跳转至内容
Merck
CN
  • An enzyme-linked immunosorbent assay to compare the affinity of chemical compounds for β-amyloid peptide as a monomer.

An enzyme-linked immunosorbent assay to compare the affinity of chemical compounds for β-amyloid peptide as a monomer.

Analytical and bioanalytical chemistry (2010-02-06)
Chunyi Jiang, Yu Feng, Xiaotong Huang, Yechun Xu, Yaping Zhang, Naiming Zhou, Xu Shen, Kaixian Chen, Hualiang Jiang, Dongxiang Liu
摘要

Aβ(1-42) is the proteolytic cleavage product of cleavage of the amyloid precursor protein by β- and γ-secretases. The aggregation of Aβ(1-42) plays a causative role in the development of Alzheimer's disease. To lock Aβ(1-42) in a homogenous state, we embedded the Aβ(1-42) sequence in an unstructured region of Bcl-x(L). Both the N-terminus and the C-terminus of Aβ(1-42) were constrained in the disordered region, whereas the conjunction did not introduce any folding to Aβ(1-42) but maintained the sequence as a monomer in solution. With Bcl-x(L)-Aβ(42), we developed an enzyme-linked immunosorbent assay to compare the affinity of compounds for monomeric Aβ(1-42). Bcl-x(L)-Aβ(42) was coated on a microplate and this was followed by incubation with different concentrations of compounds. Compounds binding to Leu17-Val24 of Aβ(1-42) inhibited the interaction between Bcl-x(L)-Aβ(42) and antibody 4G8. The method can not only reproduce the activities of the reported Aβ(1-42) inhibitors such as dopamine, tannin, and morin but can also differentiate decoy compounds that do not bind to Aβ(1-42). Remarkably, using this method, we discovered a new inhibitor that binds to monomeric Aβ(1-42) and inhibits Aβ(1-42) fibril formation. As the structure of Bcl-x(L)-Aβ(42) monomer is stable in solution, the assay could be adapted for high-throughput screening with a series of antibodies that bind the different epitopes of Aβ(1-42). In addition, the monomeric form of the Aβ(1-42) sequence in Bcl-x(L)-Aβ(42) would also facilitate the identification of Aβ(1-42) binding partners by coimmunoprecipitation, cocrystallization, surface plasmon resonance technology, or the assay as described here.