- Target-site and non-target-site-based resistance to tribenuron-methyl in multiply-resistant Myosoton aquaticum L.
Target-site and non-target-site-based resistance to tribenuron-methyl in multiply-resistant Myosoton aquaticum L.
Myosoton aquaticum L., a widespread and competitive winter weed of wheat in China, has evolved resistance to many classes of herbicides. In one M. aquaticum population (AH03), collected from Anhui Province, where tribenuron-methyl and florasulam had been used to control this weed resistance to both herbicides had evolved. Compared with the sensitive population, HN03(S), the resistant (R) population, AH03, was highly resistant to tribenuron-methyl, flucarbazone-Na and pyroxsulam, moderately resistant to pyrithiobac‑sodium, and florasulam, and had low resistance to diflufenican. AH03 was still controlled by imazethapyr, 2,4-D butylate, fluroxypyr-meptyl, and isoproturon. Pretreatment with the P450 inhibitor malathion reduced the GR50 value of tribenuron-methyl by 43% in the R population, and by 25% in the S population. This indicates that P450-mediated enhanced metabolism is one likely mechanism for tribenuron-methyl resistance in M. aquaticum. Glutathione-S-transferase (GST) activity could be induced by tribenuron-methyl in both the R and S populations. However, both the basal and induced GST activity of the R population was lower than that of the S population. The in vitro ALS assay confirmed that the ALS from the R plants showed a high resistance (52.93-fold) to tribenuron-methyl. ALS gene sequencing revealed a Pro197Ala substitution in the R plants. Based on the ALS gene sequence analysis, molecular markers were also developed to identify the specific Pro197Ala mutation. This population of M. aquaticum has multiple resistance and target-site (ALS Pro197Ala) and non-target-site resistance mechanisms contribute to tribenuron-methyl resistance.