- Prevalence and quantification of contamination of knitted cotton outer gloves during hip and knee arthroplasty surgery.
Prevalence and quantification of contamination of knitted cotton outer gloves during hip and knee arthroplasty surgery.
Knitted cotton outer gloves offer protection against surgical glove perforation and provide improved grip on instruments. These gloves absorb blood and other fluids during surgery, and may therefore also accumulate contaminating bacteria. To date, there is no published data on microbial contamination of such gloves during surgery. Knitted cotton outer gloves used in primary and revision hip and knee arthroplasty from two Swiss hospitals were analysed by quantitative bacteriology. Samples were subjected to sonication and vortexing, followed by membrane filtration of the sonicate. Membranes were incubated under aerobic and anaerobic culture conditions, respectively, for 21 days. Total microbial load for each pair of gloves was determined by colony-forming units (CFU) count. Strain identification was performed with MALDI-TOF. A total of 43 pairs of gloves were collected from continuous series of surgeries. Under aerobic culture conditions, total CFU counts ranged 0-1103, 25 (58%) samples remaining sterile, and 4 (9%) yielding > 100 CFU. Under anaerobic culture conditions, total CFU counts ranged 0-3579, 22 (51%) samples remaining sterile, 6 (14%) yielding > 100 CFU. The only covariate significantly associated with the level of contamination was the provider hospital (p < 0.0001 for aerobic and p = 0.007 for anaerobic cultures). Strain identification revealed only skin commensals, mainly coagulase-negative staphylococci and Propionibacterium spp. While contamination of surgical latex gloves is a well-known issue, no study has examined so far contamination of knitted cotton outer gloves. No or very low microbial contamination could be identified in the majority of the knitted cotton outer gloves assayed. However, a relevant proportion showed contamination far higher than estimated minimal thresholds for implant-associated infection. Clinical relevance of these findings remains to be established.