- Proteomic screening and identification of microRNA-128 targets in glioma cells.
Proteomic screening and identification of microRNA-128 targets in glioma cells.
Brain-enriched miR-128 is repressed in glioma cells, and could inhibit the proliferation of gliomas by targeting genes such as E2F3a and BMI1. To identify more targets of miR-128 in glioblastoma multiforme, the pulse stable isotope labeling with amino acids in cell culture (pSILAC) technique was used to test its impact on whole protein synthesis in T98G glioma cells. We successfully identified 1897 proteins, of which 1459 proteins were quantified. Among them, 133 proteins were downregulated after the overexpression of miR-128. Through predictions using various bioinformatics tools, 13 candidate target genes were chosen. A luciferase assay validated that 11 of 13 selected genes were potential targets of miR-128, and a mutagenesis experiment confirmed CBFB, CORO1C, GLTP, HnRNPF, and TROVE2 as the target genes. Moreover, we observed that the expression of CORO1C, TROVE2, and HnRNPF were higher in glioma cell lines compared to normal brain tissues and presented a tendency toward downregulation after overexpression of miR-128 in T98G cells. Furthermore, we have validated that CORO1C, TROVE2, and HnRNPF could inhibit glioma cell proliferation. In sum, our data showed that the integration of pSILAC and bioinformatics analysis was an efficient method for seeking the targets of miRNAs, and plentiful targets of miR-128 were screened and laid the foundation for research into the miR-128 regulation network.