Skip to Content
Merck
CN
  • EGFR-mediated chromatin condensation protects KRAS-mutant cancer cells against ionizing radiation.

EGFR-mediated chromatin condensation protects KRAS-mutant cancer cells against ionizing radiation.

Cancer research (2014-03-22)
Meng Wang, Ashley M Kern, Marieke Hülskötter, Patricia Greninger, Anurag Singh, Yunfeng Pan, Dipanjan Chowdhury, Mechthild Krause, Michael Baumann, Cyril H Benes, Jason A Efstathiou, Jeff Settleman, Henning Willers
ABSTRACT

Therapeutics that target the epidermal growth factor receptor (EGFR) can enhance the cytotoxic effects of ionizing radiation (IR). However, predictive genomic biomarkers of this radiosensitization have remained elusive. By screening 40 non-small cell lung cancer cell (NSCLC) lines, we established a surprising positive correlation between the presence of a KRAS mutation and radiosensitization by the EGFR inhibitors erlotinib and cetuximab. EGFR signaling in KRAS-mutant NSCLC cells promotes chromatin condensation in vitro and in vivo, thereby restricting the number of DNA double-strand breaks (DSB) produced by a given dose of IR. Chromatin condensation in interphase cells is characterized by an unexpected mitosis-like colocalization of serine 10 phosphorylation and lysine 9 trimethylation on histone H3. Aurora B promotes this process in a manner that is codependent upon EGFR and protein kinase C α (PKCα). PKCα, in addition to MEK/ERK signaling, is required for the suppression of DSB-inducible premature senescence by EGFR. Blockade of autophagy results in a mutant KRAS-dependent senescence-to-apoptosis switch in cancer cells treated with IR and erlotinib. In conclusion, we identify EGFR as a molecular target to overcome a novel mechanism of radioresistance in KRAS-mutant tumor cells, which stands in contrast to the unresponsiveness of KRAS-mutant cancers to EGFR-directed agents in monotherapy. Our findings may reposition EGFR-targeted agents for combination with DSB-inducing therapies in KRAS-mutant NSCLC.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Thymidine, ≥99%
Sigma-Aldrich
Anti-trimethyl (Lys9)-phospho (Ser10)-Histone H3 Antibody, rabbit monoclonal, Upstate®, from rabbit
Sigma-Aldrich
Thymidine, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-15, ascites fluid
Sigma-Aldrich
Thymidine, Vetec, reagent grade, 99%
Sigma-Aldrich
Thymidine, ≥99.0% (HPLC)
Sigma-Aldrich
Chloroquine diphosphate salt, powder or crystals, 98.5-101.0% (EP)
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Dimethyl sulfoxide, European Pharmacopoeia (EP) Reference Standard
USP
Dimethyl sulfoxide, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Dimethyl sulfoxide, Vetec, reagent grade, 99%
Supelco
Dimethyl sulfoxide, for inorganic trace analysis, ≥99.99995% (metals basis)
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Supelco
Dimethyl sulfoxide, analytical standard
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, puriss. p.a., ACS reagent, ≥99.9% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, puriss. p.a., dried, ≤0.02% water
Sigma-Aldrich
Dimethyl sulfoxide, ACS reagent, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Dimethyl sulfoxide, suitable for HPLC, ≥99.7%