Skip to Content
Merck
CN
All Photos(1)

Documents

L9283

Sigma-Aldrich

Luteolin

≥98% (TLC), powder

Sign Into View Organizational & Contract Pricing

Synonym(s):
3′,4′,5,7-Tetrahydroxyflavone
Empirical Formula (Hill Notation):
C15H10O6
CAS Number:
Molecular Weight:
286.24
Beilstein:
292084
EC Number:
MDL number:
UNSPSC Code:
12352200
PubChem Substance ID:
NACRES:
NA.77

Quality Level

Assay

≥98% (TLC)

form

powder

shelf life

3 yr

color

yellow

mp

~330 °C (lit.)

storage temp.

2-8°C

SMILES string

Oc1cc(O)c2C(=O)C=C(Oc2c1)c3ccc(O)c(O)c3

InChI

1S/C15H10O6/c16-8-4-11(19)15-12(20)6-13(21-14(15)5-8)7-1-2-9(17)10(18)3-7/h1-6,16-19H

InChI key

IQPNAANSBPBGFQ-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Luteolin (3′,4′,5′,7′-tetrahydroxyflavone), a polyphenolic compound belongs to flavones subclass of flavonoids. Luteolin is commonly found in plants like celery, green peppers and chamomile tea. Luteolin is one of the major flavonoids present in the flower extract of Hieracium pannosum Boiss, aerial part of Dracocephalum kotschyi, and contributes to the antioxidant potential of the plant. Luteolin possesses antioxidant, anti-inflammatory properties, and exerts anti-tumor potential primarily through apoptosis. Luteolin exerts its apoptotic activity through downregulation of protein kinase B (Akt) pathway leading to caspase mediated apoptosis. Luteolin also resensitizes cancer cells to therapeutics. Luteolin regulates the inflammatory genes and reduces nitric oxide and inflammatory cytokine production. The anti-inflammatory property of luteolin implicates it as a potential therapeutic agent for the neurodegenerative disease like Alzheimer′s disease. In plants, luteolin induces nodulation protein F (nodF) gene.

Application

Luteolin has been used:
  • to induce and elucidate the apoptotic pathway in renal cell carcinoma 786-O cells
  • as an additive in M9 minimal medium to induce nodF gene expression
  • as a reference standard to qualitatively and quantitatively analyse luteolin using reverse phase-high performance liquid chromatography with diode array detector (RP-HPLC-DAD)
  • as a reaction supplement for β-galactosidase assay
  • to elucidate the anti-inflammatory efficacy of luteolin in pseudorabies virus infected RAW264.7 cell line by measuring the anti-inflammatory mediators production and also cell viability and cytotoxicity assay

Biochem/physiol Actions

Hydroxylated flavone derivative, a strong antioxidant and radical scavenger. Suggested to play a role in prevention of cancer, possibly via the inhibition of fatty acid synthase activity.

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Optimization of phenolic and flavonoid content and antioxidants capacity of pressurized liquid extraction from Dracocephalum kotschyi via circumscribed central composite
Kamali H, et al.
Journal of Supercritical Fluids, 107, 307-314 (2016)
Luteolin inhibits viral-induced inflammatory response in RAW264. 7 cells via suppression of STAT1/3 dependent NF-kappaB and activation of HO-1
Liu CW, et al.
Free Radical Biology & Medicine, 95, 180-189 (2016)
Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation
Sun J, et al.
The Plant Journal, 46(6), 961-970 (2006)
Luteolin as a potential preventive and therapeutic candidate for Alzheimer's disease
Kwon Y.
Experimental Gerontology, 95, 39-43 (2017)
Induction of apoptosis by luteolin involving akt inactivation in human 786-O renal cell carcinoma cells
Ou YC, et al.
Evidence-Based Complementary and Alternative Medicine : ECAM, 2013 (2013)

Articles

Fatty acid synthesis supports cancer cell proliferation, essential for membrane generation, protein modification, and bioenergetics.

Antioxidants protect biological systems from oxidative damage produced by oxygen-containing free radicals and from redoxactive transition metal ions such as iron, copper, and cadmium.

Related Content

DISCOVER Bioactive Small Molecules for Nitric Oxide & Cell Stress Research

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service