D6897
2′-Deoxycytidine 3′-monophosphate ammonium salt
≥97%
Synonym(s):
3′-dCMP
Sign Into View Organizational & Contract Pricing
All Photos(1)
About This Item
Recommended Products
Assay
≥97%
form
powder
solubility
water: 50 mg/mL, clear, colorless
storage temp.
−20°C
SMILES string
N.NC1=NC(=O)N(C=C1)C2CC(OP(O)(O)=O)C(CO)O2
InChI
1S/C9H14N3O7P.H3N/c10-7-1-2-12(9(14)11-7)8-3-5(6(4-13)18-8)19-20(15,16)17;/h1-2,5-6,8,13H,3-4H2,(H2,10,11,14)(H2,15,16,17);1H3
InChI key
VCTPYSBTEURORB-UHFFFAOYSA-N
Looking for similar products? Visit Product Comparison Guide
Application
2′-Deoxycytidine 3′-monophosphate (3′-dCMP) and 3′-dCMPH are used as a model molecules to elucidate the mechanism(s) of the nascent stage of DNA strand breakage and to study nucleic acid base modifications by adduct formation.
Storage Class Code
13 - Non Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Personal Protective Equipment
dust mask type N95 (US), Eyeshields, Gloves
Regulatory Information
新产品
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Chemical research in toxicology, 8(2), 278-283 (1995-03-01)
Lipid peroxidation (LPO) products are known to interact with DNA, yielding several types of adduct with nucleobases. In this study, we demonstrate the formation of two ethenobase adducts, 1,N6-ethenoadenine and 3,N4-ethenocytosine, by reaction of LPO products with nucleic acid bases.
Carcinogenesis, 9(8), 1401-1404 (1988-08-01)
In vitro reaction of DNA with styrene-7,8-oxide (styrene oxide) produced five adducts, as determined by 32P-postlabeling. When styrene oxide was reacted in vitro with deoxyribonucleotides, five adducts were observed from 2'-deoxyguanosine-3'-monophosphate, two from 2'-deoxyadenosine-3'-monophosphate, none from 2'-deoxythymidine-3-monophosphate or 2'-deoxycytidine-3'-monophosphate. Chromatographic
Journal of the American Chemical Society, 128(29), 9322-9323 (2006-07-20)
A detailed understanding of DNA strand breaks induced by low energy electrons (LEE) is of crucial importance for the advancement of many areas of molecular biology and medicine. To elucidate the mechanism of DNA strand breaks by LEEs, theoretical investigations
Journal of the American Chemical Society, 128(4), 1250-1252 (2006-01-26)
To elucidate the mechanism of the nascent stage of DNA strand breakage by low-energy electrons, theoretical investigations of electron attachment to nucleotides have been performed by the reliably calibrated B3LYP/DZP++ approach (Chem. Rev. 2002, 102, 231). The 2'-deoxycytidine-3'-monophosphate (3'-dCMPH) and
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service