Skip to Content
Merck
CN
  • Adenoviral-mediated gene transfer of insulin-like growth factor 1 enhances wound healing and induces angiogenesis.

Adenoviral-mediated gene transfer of insulin-like growth factor 1 enhances wound healing and induces angiogenesis.

The Journal of surgical research (2014-04-15)
Swathi Balaji, Maria LeSaint, Sukanta S Bhattacharya, Chad Moles, Yashu Dhamija, Mykia Kidd, Louis D Le, Alice King, Aimen Shaaban, Timothy M Crombleholme, Paul Bollyky, Sundeep G Keswani
ABSTRACT

Chronic wounds are characterized by a wound healing and neovascularization deficit. Strategies to increase neovascularization can significantly improve chronic wound healing. Insulin-like growth factor (IGF)-1 is reported to be a keratinocyte mitogen and is believed to induce angiogenesis via a vascular endothelial growth factor (VEGF)-dependent pathway. Using a novel ex vivo human dermal wound model and a diabetic-impaired wound healing murine model, we hypothesized that adenoviral overexpression of IGF-1 (Ad-IGF-1) will enhance wound healing and induce angiogenesis through a VEGF-dependent pathway. Ex vivo: 6-mm full-thickness punch biopsies were obtained from normal human skin, and 3-mm full-thickness wounds were created at the center. Skin explants were maintained at air liquid interface. Db/db murine model: 8-mm full-thickness dorsal wounds in diabetic (db/db) mice were created. Treatment groups in both human ex vivo and in vivo db/db wound models include 1×10(8) particle forming units of Ad-IGF-1 or Ad-LacZ, and phosphate buffered saline (n=4-5/group). Cytotoxicity (lactate dehydrogenase) was quantified at days 3, 5, and 7 for the human ex vivo wound model. Epithelial gap closure (hematoxylin and eosin; Trichrome), VEGF expression (enzyme-linked immunosorbent assay), and capillary density (CD 31+CAPS/HPF) were analyzed at day 7. In the human ex vivo organ culture, the adenoviral vectors did not demonstrate any significant difference in cytotoxicity compared with phosphate buffered saline. Ad-IGF-1 overexpression significantly increases basal keratinocyte migration, with no significant effect on epithelial gap closure. There was a significant increase in capillary density in the Ad-IGF-1 wounds. However, there was no effect on VEGF levels in Ad-IGF-1 samples compared with controls. In db/db wounds, Ad-IGF-1 overexpression significantly improves epithelial gap closure and granulation tissue with a dense cellular infiltrate compared with controls. Ad-IGF-1 also increases capillary density, again with no significant difference in VEGF levels in the wounds compared with control treatments. In two different models, our data demonstrate that adenoviral-mediated gene transfer of IGF-1 results in enhanced wound healing and induces angiogenesis via a VEGF-independent pathway. Understanding the underlying mechanisms of IGF-1 effects on angiogenesis may help produce novel therapeutics for chronic wounds or diseases characterized by a deficit in neovascularization.

MATERIALS
Product Number
Brand
Product Description

Supelco
Glycerin, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Glycerin, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Glycerol solution, puriss., meets analytical specification of Ph. Eur., BP, 84-88%
Sigma-Aldrich
Glycerol solution, 83.5-89.5% (T)
Sigma-Aldrich
Cesium chloride, ≥99.999% trace metals basis
Sigma-Aldrich
Cesium chloride, BioUltra, Molecular Biology, ≥99.5% (AT)
Sigma-Aldrich
Glycerol, BioUltra, Molecular Biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Glycerol, tested according to Ph. Eur., anhydrous
Sigma-Aldrich
Cesium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Glycerol, FCC, FG
Sigma-Aldrich
Cesium chloride, 99.99% trace metals basis
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
Glycerin, meets USP testing specifications
Sigma-Aldrich
Cesium chloride, Grade II, ≥98%
Sigma-Aldrich
Cesium chloride, Molecular Biology, ≥98%
Sigma-Aldrich
Cesium chloride, BioXtra, ≥99.5% (titration)
Sigma-Aldrich
Cesium chloride, Molecular Biology, ≥99% (silver nitrate titration)
Sigma-Aldrich
Cesium chloride, optical grade, ≥99.5% trace metals basis
Sigma-Aldrich
Cesium chloride, Grade I, ≥99.0%
Sigma-Aldrich
Glycerol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Cesium chloride, Vetec, reagent grade, ≥99%
Sigma-Aldrich
Cesium chloride, ReagentPlus®, 99.9%
Sigma-Aldrich
Glycerol, BioXtra, ≥99% (GC)
Supelco
Glycerol, analytical standard
Sigma-Aldrich
Cesium chloride, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, 99.9%
Sigma-Aldrich
Glycerol, puriss., anhydrous, 99.0-101.0% (alkalimetric)
Sigma-Aldrich
Glycerol, puriss. p.a., ACS reagent, anhydrous, dist., ≥99.5% (GC)
Sigma-Aldrich
Cesium chloride, puriss. p.a., ≥99.5%
Sigma-Aldrich
Glycerol, ACS reagent, ≥99.5%
Sigma-Aldrich
Glycerol, ReagentPlus®, ≥99.0% (GC)