Skip to Content
Merck
CN
  • The directionality of the nuclear transport of the influenza A genome is driven by selective exposure of nuclear localization sequences on nucleoprotein.

The directionality of the nuclear transport of the influenza A genome is driven by selective exposure of nuclear localization sequences on nucleoprotein.

Virology journal (2009-06-06)
Winco Wh Wu, Nelly Panté
ABSTRACT

Early in infection, the genome of the influenza A virus, consisting of eight complexes of RNA and proteins (termed viral ribonucleoproteins; vRNPs), enters the nucleus of infected cells for replication. Incoming vRNPs are imported into the nucleus of infected cells using at least two nuclear localization sequences on nucleoprotein (NP; NLS1 at the N terminus, and NLS2 in the middle of the protein). Progeny vRNP assembly occurs in the nucleus, and later in infection, these are exported from the nucleus to the cytoplasm. Nuclear-exported vRNPs are different from incoming vRNPs in that they are prevented from re-entering the nucleus. Why nuclear-exported vRNPs do not re-enter the nucleus is unknown. To test our hypothesis that the exposure of NLSs on the vRNP regulates the directionality of the nuclear transport of the influenza vRNPs, we immunolabeled the two NLSs of NP (NLS1 and NLS2) and analyzed their surface accessibility in cells infected with the influenza A virus. We found that the NLS1 epitope on NP was exposed throughout the infected cells, but the NLS2 epitope on NP was only exposed in the nucleus of the infected cells. Addition of the nuclear export inhibitor leptomycin B further revealed that NLS1 is no longer exposed in cytoplasmic NP and vRNPs that have already undergone nuclear export. Similar immunolabeling studies in the presence of leptomycin B and with cells transfected with the cDNA of NP revealed that the NLS1 on NP is hidden in nuclear exported-NP. NLS1 mediates the nuclear import of newly-synthesized NP and incoming vRNPs. This NLS becomes hidden on nuclear-exported NP and nuclear-exported vRNPs. Thus the selective exposure of the NLS1 constitutes a critical mechanism to regulate the directionality of the nuclear transport of vRNPs during the influenza A viral life cycle.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Calf Serum, Iron-Supplemented, from formula-fed bovine calves, sterile-filtered, USA origin, suitable for cell culture
Sigma-Aldrich
Fetal Bovine Serum, USA origin, suitable for cell culture
Sigma-Aldrich
Fetal Bovine Serum, USA origin, Heat Inactivated, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Fetal Bovine Serum, Australia origin, USDA approved, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Horse Serum, USA origin, Donor herd, suitable for cell culture, suitable for hybridoma
Human serum (cystatin C), ERM®, certified reference material
Sigma-Aldrich
Triton X-100, for molecular biology
Sigma-Aldrich
Triton X-100, peroxide- and carbonyl-free
Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
Triton X-100, BioXtra