Skip to Content

尊敬的客户:

目前国际形势复杂多变,关税政策尚不明朗,这可能对我们的产品价格产生一定影响。在此情况下,我们希望就订单事宜与您进行友好沟通。

基于当前的不确定性,如果您选择在此期间下单,我们将保留根据实际情况调整价格的权利。同时,我们也理解市场变化可能给您带来的困扰,因此如果在订单实际发货前因关税政策变动导致价格出现较大波动,默克将与您进行协商讨论并视情况对订单进行调整或取消。

关于应对近期政策变化的重要更新,请点击此处查看详情。

Merck
CN
HomeqPCRPrimer Optimization Using Temperature Gradient

Primer Optimization Using Temperature Gradient

Optimization of qPCR Conditions

Optimization of qPCR conditions is important for the development of a robust assay. Indications of poor optimization are a lack of reproducibility between replicates as well as inefficient and insensitive assays. The two main approaches are optimization of primer concentration and/or annealing temperatures. 

One approach to assay optimization is to determine the optimum annealing temperature (Ta) of the primers by testing identical reactions containing a fixed primer concentration, across a range of annealing temperatures. This can be achieved if a qPCR instrument with a temperature gradient block is available. In the format presented in this protocol, primers are included at a final concentration of 450 nM, and the gradient is orientated across the X axis of the block such that all columns are subjected to the same Ta (i.e., 12 different temperatures). In other instruments, the gradient is down the column such that all rows have the same Ta (i.e., 8 different temperatures). The following protocol can be applied to either, albeit after minor modifications.

Equipment

  • Quantitative PCR instrument with integrated gradient block control function
  • Laminar flow hood for PCR set up (optional)

Reagents

  • cDNA diluted 1:5-1:10, gDNA 10ng, synthetic oligo (10,000 copies) or other suitable template for optimization.
  • KiCqStart SYBR® Green ReadyMix™ (KCQS00/KCQS01/KCQS02/KCQS03; instrument specific, see Table P17-42).
  • PCR grade water: PCR grade water (W1754 or W4502) as 20 mL aliquots; freeze; use a fresh aliquot for each reaction.
  • Forward and reverse primers concentrated stocks (10 μM working stocks: GOI).
    •    Custom oligos can be ordered at sigmaaldrich.com/oligos.
Hot Start ReadyMixes (Taq, Buffer, dNTPs, Reference Dye, MgCl2)
KiCqStart® SYBR® Green qPCR ReadyMix™,
Cat. No. KCQS00
KiCqStart® SYBR® Green qPCR ReadyMix™ Low Rox ,
Cat. No. KCQS01
KiCqStart® SYBR® Green qPCR ReadyMix™ with ROX,
Cat. No. KCQS02
KiCqStart® SYBR® Green qPCR ReadyMix™ for iQ,
Cat. No. KCQS03
Compatible Instruments:Compatible Instruments:Compatible Instruments:Compatible Instruments:
Bio-Rad CFX384™Applied Biosystems 7500Applied Biosystems 5700Bio-Rad iCycler iQ™
Bio-Rad CFX96™Applied Biosystems 7500Applied Biosystems 7000Bio-Rad iQ™5
Bio-Rad MiniOpticon™Fast Applied Biosystems ViiA 7Applied Biosystems 7300Bio-Rad MyiQ™
Bio-Rad MyiQ™Stratagene Mx3000P®Applied Biosystems 7700 
Bio-Rad/MJ Chromo4™Stratagene Mx3005P™Applied Biosystems 7900 
Bio-Rad/MJ Opticon 2Stratagene Mx4000™Applied Biosystems 7900 HT Fast 
Bio-Rad/MJ Opticon® Applied Biosystems 7900HT 
Cepheid SmartCycler® Applied Biosystems StepOnePlus™ 
Eppendorf Mastercycler® ep realplex Applied Biosystems StepOne™ 
Eppendorf Mastercycler® ep realplex2 s   
Illumina Eco qPCR   
Qiagen/Corbett Rotor-Gene® 3000   
Qiagen/Corbett Rotor-Gene® 6000   
Qiagen/Corbett Rotor-Gene® Q   
Roche LightCycler® 480   
Table P17-42. SYBR Green PCR Mix Selection Guide

Supplies

Notes for this Protocol

  • cDNA is generated using random priming or oligo-dT priming method and diluted 1:10 for use, but any suitable, alternative template may be used.
  • All reactions are run in duplicate as technical replicates.
  • If using a PCR plate, follow a plate schematic (e.g., shown in Figure P14-19) to ensure that the reaction mix, samples
    and controls are added to the correct wells.

 

Method

1.    Prepare a master mix for 56 reactions according to Table P14-35. Mix well, avoiding bubbles.

ReagentsVolume (μL) per
Single 20 μL Reaction
Volume (μL) for
56 Reactions
KiCqStart SYBR® Green qPCR
ReadyMix 2×
10560
Forward primer (10 μM)0.950.4
Reverse primer (10 μM)0.950.4
PCR grade water4.2235.2
Table P14-35. Reaction Master Mix for Ta Optimization

2.    Remove 448 μL of master mix from step 1 (i.e., half ) into a separate tube for setting up the No Template Control (NTC)
       reactions.

3.    Add 112 μL of template to the remaining master mix from step 2. Set Template master mix on ice.

4.    Add 112 μL of water to the other half of the master mix from step 2. Set NTC master mix on ice.

5.    Aliquot 20 μL Template master mix from step 3 into two rows of the PCR plate labeled GOI.

6.    Aliquot 20 μL NTC master mix from step 4 into two rows of the PCR plate labeled NTC.

7.    Cover plates and label. (Make sure the labeling does not obscure instrument excitation/detection light path.)

8.    Run samples according to the three-step protocol below
       (Note: These conditions are specific for FAST cycling protocols) ensuring that the annealing temperature has been
       defined on a gradient between the lowest and highest that would be appropriate for the primers (example shows
       54–70 °C). Steps 1–3 are repeated through 40 cycles. A standard dissociation curve is run after amplification.

FAST Cycling ConditionsTemp (°C)Time (sec)
Initial denaturation/Hot Start9530
Steps 1–3 are repeated through 40 cycles
Step 1955
Step 254–70 (gradient)15
Step 37210
Table P14-36. FAST qPCR Cycling Conditions for Ta Optimization

Note: Use standard dissociation curve protocol (data collection).

Plate Layout for Ta Optimization With Identical Ta for Each Column.

Figure P14-19. Plate Layout for Ta Optimization With Identical Ta for Each Column.

Note: The distribution of the samples and controls across the temperature gradient. If the instrument has a temperature gradient that varies vertically down the plate column, the samples and controls will need to be re-arranged accordingly.

Sign In To Continue

To continue reading please sign in or create an account.

Don't Have An Account?