Skip to Content
Merck
CN
  • TGF-β1-induced differentiation of SHED into functional smooth muscle cells.

TGF-β1-induced differentiation of SHED into functional smooth muscle cells.

Stem cell research & therapy (2017-01-25)
Jian Guang Xu, Shao Yue Zhu, Boon Chin Heng, Waruna Lakmal Dissanayaka, Cheng Fei Zhang
ABSTRACT

Adequate vascularization is crucial for supplying nutrition and discharging metabolic waste in freshly transplanted tissue-engineered constructs. Obtaining the appropriate building blocks for vascular tissue engineering (i.e. endothelial and mural cells) is a challenging task for tissue neovascularization. Hence, we investigated whether stem cells from human exfoliated deciduous teeth (SHED) could be induced to differentiate into functional vascular smooth muscle cells (vSMCs). We utilized two cytokines of the TGF-β family, transforming growth factor beta 1 (TGF-β1) and bone morphogenetic protein 4 (BMP4), to induce SHED differentiation into SMCs. Quantitative real-time polymerase chain reaction (RT-qPCR) was used to assess mRNA expression, and protein expression was analyzed using flow cytometry, western blot and immunostaining. Additionally, to examine whether these SHED-derived SMCs possess the same function as primary SMCs, in vitro Matrigel angiogenesis assay, fibrin gel bead assay, and functional contraction study were used here. By analyzing the expression of specific markers of SMCs (α-SMA, SM22α, Calponin, and SM-MHC), we confirmed that TGF-β1, and not BMP4, could induce SHED differentiation into SMCs. The differentiation efficiency was relatively high (α-SMA SHED could be successfully induced into functional SMCs for vascular tissue engineering, and this course could be regulated through the ALK5 signaling pathway. Hence, SHED appear to be a promising candidate cell type for vascular tissue engineering.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Monoclonal Anti-Actin, α-Smooth Muscle, clone 1A4, ascites fluid
Sigma-Aldrich
Thrombin from bovine plasma, lyophilized powder, ≥2,000 NIH units/mg protein (E1%/280 = 19.5)
Sigma-Aldrich
Cell Dissociation Solution Non-enzymatic 1x, Prepared in phosphate buffered saline without calcium and magnesium, sterile-filtered, BioReagent, suitable for cell culture