Skip to Content
Merck
CN
  • Identification of aldehyde reductase catalyzing the terminal step for conversion of xylose to butanetriol in engineered Escherichia coli.

Identification of aldehyde reductase catalyzing the terminal step for conversion of xylose to butanetriol in engineered Escherichia coli.

Bioprocess and biosystems engineering (2015-06-07)
Kris Niño G Valdehuesa, Won-Keun Lee, Kristine Rose M Ramos, Rhudith B Cabulong, JiSoo Choi, Huaiwei Liu, Grace M Nisola, Wook-Jin Chung
ABSTRACT

Biosynthetic pathways for the production of biofuels often rely on inherent aldehyde reductases (ALRs) of the microbial host. These native ALRs play vital roles in the success of the microbial production of 1,3-propanediol, 1,4-butanediol, and isobutanol. In the present study, the main ALR for 1,2,4-butanetriol (BT) production in Escherichia coli was identified. Results of real-time PCR analysis for ALRs in EWBT305 revealed the increased expression of adhP, fucO, adhE, and yqhD genes during BT production. The highest increase of expression was observed up to four times in yqhD. Singular deletion of adhP, fucO, or adhE gene showed marginal differences in BT production compared to that of the parent strain, EWBT305. Remarkably, yqhD gene deletion (KBTA4 strain) almost completely abolished BT production while its re-introduction (wild-type gene with its native promoter) on a low copy plasmid restored 75 % of BT production (KBTA4-2 strain). This suggests that yqhD gene is the main ALR of the BT pathway. In addition, KBTA4 showed almost no NADPH-dependent ALR activity, but was also restored upon re-introduction of the yqhD gene (KBTA4-2 strain). Therefore, the required ALR activity to complete the BT pathway was mainly contributed by YqhD. Increased gene expression and promiscuity of YqhD were both found essential factors to render YqhD as the key ALR for the BT pathway.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Thiamine hydrochloride, reagent grade, ≥99% (HPLC)
Sigma-Aldrich
Thiamine hydrochloride, ≥98%, FCC, FG
Sigma-Aldrich
Thiamine hydrochloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Thiamine hydrochloride, meets USP testing specifications
Sigma-Aldrich
Magnesium sulfate, BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Magnesium sulfate, ≥99.99% trace metals basis
Sigma-Aldrich
Magnesium sulfate, Vetec, reagent grade
Sigma-Aldrich
Magnesium sulfate solution, BioUltra, for molecular biology
Sigma-Aldrich
Magnesium sulfate solution, for molecular biology, 1.00 M±0.04 M
Sigma-Aldrich
D-(+)-Xylose, ≥99% (GC)