Skip to Content
Merck
CN
  • Predictive Studies Suggest that the Risk for the Selection of Antibiotic Resistance by Biocides Is Likely Low in Stenotrophomonas maltophilia.

Predictive Studies Suggest that the Risk for the Selection of Antibiotic Resistance by Biocides Is Likely Low in Stenotrophomonas maltophilia.

PloS one (2015-07-23)
María Blanca Sánchez, Francesca Decorosi, Carlo Viti, Marco Rinaldo Oggioni, José Luis Martínez, Alvaro Hernández
ABSTRACT

Biocides are used without restriction for several purposes. As a consequence, large amounts of biocides are released without any control in the environment, a situation that can challenge the microbial population dynamics, including selection of antibiotic resistant bacteria. Previous work has shown that triclosan selects Stenotrophomonas maltophilia antibiotic resistant mutants overexpressing the efflux pump SmeDEF and induces expression of this pump triggering transient low-level resistance. In the present work we analyze if two other common biocides, benzalkonium chloride and hexachlorophene, trigger antibiotic resistance in S. maltophilia. Bioinformatic and biochemical methods showed that benzalkonium chloride and hexachlorophene bind the repressor of smeDEF, SmeT. Only benzalkonium chloride triggers expression of smeD and its effect in transient antibiotic resistance is minor. None of the hexachlorophene-selected mutants was antibiotic resistant. Two benzalkonium chloride resistant mutants presented reduced susceptibility to antibiotics and were impaired in growth. Metabolic profiling showed they were more proficient than their parental strain in the use of some dipeptides. We can then conclude that although bioinformatic predictions and biochemical studies suggest that both hexachlorophene and benzalkonium chloride should induce smeDEF expression leading to transient S. maltophilia resistance to antibiotics, phenotypic assays showed this not to be true. The facts that hexachlorophene resistant mutants are not antibiotic resistant and that the benzalkonium chloride resistant mutants presenting altered susceptibility to antibiotics were impaired in growth suggests that the risk for the selection (and fixation) of S. maltophilia antibiotic resistant mutants by these biocides is likely low, at least in the absence of constant selection pressure.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Magnesium chloride solution, PCR Reagent, 25 mM MgCI2 solution for PCR
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~0.025 M in H2O
Sigma-Aldrich
Disodium succinate, ≥98%
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, 2 M in H2O
Sigma-Aldrich
Magnesium chloride solution, for molecular biology, 1.00 M±0.01 M
Sigma-Aldrich
Magnesium chloride solution, 0.1 M
Sigma-Aldrich
Magnesium chloride, anhydrous, ≥98%
Sigma-Aldrich
Magnesium chloride, BioReagent, suitable for insect cell culture, ≥97.0%
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
Magnesium chloride, powder, <200 μm
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis