Skip to Content
Merck
CN

SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR.

Journal of cell science (2014-12-05)
Katrin Diesenberg, Monika Beerbaum, Uwe Fink, Peter Schmieder, Michael Krauss
ABSTRACT

Septins constitute a family of GTP-binding proteins that are involved in a variety of biological processes. Several isoforms have been implicated in disease, but the molecular mechanisms underlying pathogenesis are poorly understood. Here, we show that depletion of SEPT9 decreases surface levels of epidermal growth factor receptors (EGFRs) by enhancing receptor degradation. We identify a consensus motif within the SEPT9 N-terminal domain that supports its association with the adaptor protein CIN85 (also known as SH3KBP1). We further show CIN85-SEPT9 to be localized exclusively to the plasma membrane, where SEPT9 is recruited to EGF-engaged receptors in a CIN85-dependent manner. Finally, we demonstrate that SEPT9 negatively regulates EGFR degradation by preventing the association of the ubiquitin ligase Cbl with CIN85, resulting in reduced EGFR ubiquitylation. Taken together, these data provide a mechanistic explanation of how SEPT9, though acting exclusively at the plasma membrane, impairs the sorting of EGFRs into the degradative pathway.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Monoclonal Anti-MAP Kinase, Activated (Diphosphorylated ERK-1&2) antibody produced in mouse, clone MAPK-YT, ascites fluid
Sigma-Aldrich
Anti-Sept6 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Monoclonal Anti-α-Tubulin antibody produced in mouse, ascites fluid, clone B-5-1-2