Skip to Content
Merck
CN
  • Evaluation of injection methods for fast, high peak capacity separations with low thermal mass gas chromatography.

Evaluation of injection methods for fast, high peak capacity separations with low thermal mass gas chromatography.

Journal of chromatography. A (2015-03-31)
Brian D Fitz, Brandyn C Mannion, Khang To, Trinh Hoac, Robert E Synovec
ABSTRACT

Low thermal mass gas chromatography (LTM-GC) was evaluated for rapid, high peak capacity separations with three injection methods: liquid, headspace solid phase micro-extraction (HS-SPME), and direct vapor. An Agilent LTM equipped with a short microbore capillary column was operated at a column heating rate of 250 °C/min to produce a 60s separation. Two sets of experiments were conducted in parallel to characterize the instrumental platform. First, the three injection methods were performed in conjunction with in-house built high-speed cryo-focusing injection (HSCFI) to cryogenically trap and re-inject the analytes onto the LTM-GC column in a narrower band. Next, the three injection methods were performed natively with LTM-GC. Using HSCFI, the peak capacity of a separation of 50 nl of a 73 component liquid test mixture was 270, which was 23% higher than without HSCFI. Similar peak capacity gains were obtained when using the HSCFI with HS-SPME (25%), and even greater with vapor injection (56%). For the 100 μl vapor sample injected without HSCFI, the preconcentration factor, defined as the ratio of the maximum concentration of the detected analyte peak relative to the analyte concentration injected with the syringe, was determined to be 11 for the earliest eluting peak (most volatile analyte). In contrast, the preconcentration factor for the earliest eluting peak using HSCFI was 103. Therefore, LTM-GC is demonstrated to natively provide in situ analyte trapping, although not to as great an extent as with HSCFI. We also report the use of LTM-GC applied with time-of-flight mass spectrometry (TOFMS) detection for rapid, high peak capacity separations from SPME sampled banana peel headspace.

MATERIALS
Product Number
Brand
Product Description

Supelco
Residual Solvent - Toluene, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
2-Butanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Nonane, ReagentPlus®, 99%
Sigma-Aldrich
Acetone, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Cyclohexane, ACS reagent, ≥99%
Sigma-Aldrich
Cyclohexane, Laboratory Reagent, ≥99.8%
Sigma-Aldrich
Heptane, ReagentPlus®, 99%
Sigma-Aldrich
Methylcyclohexane, spectrophotometric grade, 99%
Sigma-Aldrich
Chlorobenzene, ACS reagent, ≥99.5%
Sigma-Aldrich
Methylcyclohexane, ReagentPlus®, 99%
Sigma-Aldrich
Cyclohexane, ACS reagent, ≥99%
Sigma-Aldrich
1-Octanol, ReagentPlus®, 99%
Sigma-Aldrich
Chloroform, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Acetone, puriss., meets analytical specification of Ph. Eur., BP, NF, ≥99% (GC)
Sigma-Aldrich
Acetone, ACS reagent, ≥99.5%
Sigma-Aldrich
1-Octanol, ACS reagent, ≥99%
Sigma-Aldrich
Chloroform, ACS spectrophotometric grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, contains amylenes as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroform, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
USP
Acetone, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Hexadecane, Vetec, reagent grade, 98%
Supelco
1-Propanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Heptane, puriss. p.a., reag. Ph. Eur., ≥99% n-heptane basis (GC)
Sigma-Aldrich
Cyclohexane, puriss. p.a., ACS reagent, ≥99.5% (GC)
Sigma-Aldrich
Octane, reagent grade, 98%
Sigma-Aldrich
Acetone, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Acetone, histological grade, ≥99.5%
Sigma-Aldrich
2-Pentanone, ultrapure grade, ≥99.5%
Sigma-Aldrich
Acetone, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Heptane, suitable for HPLC, ≥96%