Skip to Content
Merck
CN
  • Stability, interaction, size, and microenvironmental properties of mixed micelles of decanoyl-N-methylglucamide and sodium dodecyl sulfate.

Stability, interaction, size, and microenvironmental properties of mixed micelles of decanoyl-N-methylglucamide and sodium dodecyl sulfate.

Langmuir : the ACS journal of surfaces and colloids (2004-11-17)
J M Hierrezuelo, J Aguiar, C Carnero Ruiz
ABSTRACT

The mixed micellization between the nonionic surfactant decanoyl-N-methylglucamide (MEGA-10) and the common sodium dodecyl sulfate (SDS) in aqueous solutions of 0.1 M NaCl was investigated by the fluorescence probe method. The critical micelle concentrations were determined by the pyrene 1:3 ratio method. The experimental data are discussed in light of two mixing thermodynamic models within the framework of the pseudophase separation model, including the conventional regular solution theory and a recent treatment proposed by Maeda (J. Phys. Chem. B 2004, 108, 6043). This last approach provides a more appropriate description of the mixed system, particularly in two aspects: the nature of the interactions responsible for the stability of the mixed micelle and the behavior of the excess free energy per monomer of the system. By using the static quenching method, the mean micellar aggregation numbers of mixed micelles in the whole range of compositions were obtained. It was found that the micellar aggregation number initially increases with the content of the ionic component, then remains roughly constant, and, finally, decreases slightly for high content of this component. This behavior was analyzed taking into account the effects produced by the presence of the charged headgroups of sodium dodecyl sulfate, as this component increases its participation in the mixed micelle. The micropolarity of the mixed micelles was studied by the pyrene 1:3 ratio index. It was observed that the increasing participation of the ionic component induces the formation of micelles with a more dehydrated structure. Data of micellar microviscosity were obtained by using different methods, including fluorescence intensity measurements of Auramine O and steady-state fluorescence anisotropy of rhodamine B and diphenylbutadiene. The results obtained from these experiments are in good agreement and suggest the formation of mixed micelles with a less ordered structure as the content of SDS increases.

MATERIALS
Product Number
Brand
Product Description

Avanti
MEGA-9, Avanti Research - A Croda Brand 850541P, powder
Sigma-Aldrich
N-Decanoyl-N-methylglucamine, ≥98% (GC)
Avanti
MEGA-8, Avanti Research - A Croda Brand 850540P, powder
Avanti
MEGA-10, Avanti Research - A Croda Brand 850542P, powder