- Conjugated polymer nanoparticles for light-activated anticancer and antibacterial activity with imaging capability.
Conjugated polymer nanoparticles for light-activated anticancer and antibacterial activity with imaging capability.
A new water-soluble conjugated polymer containing fluorene and boron-dipyrromethene repeat units in the backbones (PBF) that exhibits red emission was synthesized and characterized. Cationic PBF forms uniform nanoparticles with negatively charged disodium salt 3,3'-dithiodipropionic acid (SDPA) in aqueous solution through electrostatic interactions. The nanoparticles display absorption maximum at 550 nm and emission maximum at 590 nm. Upon photoexcitation with white light (400-800 nm) with 90 and 45 mW·cm(-2) for bacteria and cancer cells killing respectively, PBF nanoparticles can sensitize the oxygen molecule to readily produce reactive oxygen species (ROS) for rapidly killing neighboring bacteria and cancer cells. Furthermore, PBF nanoparticles concurrently provide optical imaging capability. PBF nanoparticles are therefore a promising multifunctional material for treating cancers and bacteria infections, while concurrently providing optical monitoring capabilities.