Skip to Content
Merck
CN
  • Cytosolic RNA binding of the mitochondrial TCA cycle enzyme malate dehydrogenase.

Cytosolic RNA binding of the mitochondrial TCA cycle enzyme malate dehydrogenase.

RNA (New York, N.Y.) (2024-04-13)
Michelle Noble, Aindrila Chatterjee, Thileepan Sekaran, Thomas Schwarzl, Matthias W Hentze
ABSTRACT

Several enzymes of intermediary metabolism have been identified to bind RNA in cells, with potential consequences for the bound RNAs and/or the enzyme. In this study, we investigate the RNA-binding activity of the mitochondrial enzyme malate dehydrogenase 2 (MDH2), which functions in the tricarboxylic acid (TCA) cycle and the malate-aspartate shuttle. We confirmed in cellulo RNA binding of MDH2 using orthogonal biochemical assays and performed enhanced cross-linking and immunoprecipitation (eCLIP) to identify the cellular RNAs associated with endogenous MDH2. Surprisingly, MDH2 preferentially binds cytosolic over mitochondrial RNAs, although the latter are abundant in the milieu of the mature protein. Subcellular fractionation followed by RNA-binding assays revealed that MDH2-RNA interactions occur predominantly outside of mitochondria. We also found that a cytosolically retained N-terminal deletion mutant of MDH2 is competent to bind RNA, indicating that mitochondrial targeting is dispensable for MDH2-RNA interactions. MDH2 RNA binding increased when cellular NAD+ levels (MDH2's cofactor) were pharmacologically diminished, suggesting that the metabolic state of cells affects RNA binding. Taken together, our data implicate an as yet unidentified function of MDH2-binding RNA in the cytosol.

MATERIALS
Product Number
Brand
Product Description

Millipore
Anti-FLAG® M2 Magnetic Beads, affinity isolated antibody
Sigma-Aldrich
Monoclonal ANTI-FLAG® M2 antibody produced in mouse, 1 mg/mL, clone M2, affinity isolated antibody, buffered aqueous solution (50% glycerol, 10 mM sodium phosphate, and 150 mM NaCl, pH 7.4)
Sigma-Aldrich
Nicotinamide Phosphoribosyltransferase Inhibitor, FK866, The Nicotinamide Phosphoribosyltransferase Inhibitor, FK866, also referenced under CAS 658084-64-1, controls the biological activity of Nicotinamide Phosphoribosyltransferase. This small molecule/inhibitor is primarily used for Neuroscience applications.