- Administration of 5-bromo-2'-deoxyuridine interferes with neuroblast proliferation and promotes apoptotic cell death in the rat cerebellar neuroepithelium.
Administration of 5-bromo-2'-deoxyuridine interferes with neuroblast proliferation and promotes apoptotic cell death in the rat cerebellar neuroepithelium.
The current study was conducted to assess whether a single administration of 5-bromo-2'-deoxyuridine (BrdU) interferes with cell proliferation and leads to the activation of apoptotic cellular events in the prenatal cerebellum. BrdU effects across a wide range of doses (25-300 μg/g b.w.) were analyzed using immunohistochemical and ultrastructural procedures. The pregnant rats were injected with BrdU at embryonic day 13, and their fetuses were sacrificed from 5 to 35 hr after exposure. The quantification of several parameters such as the density of mitotic figures, and BrdU and proliferating cell nuclear antigen (PCNA)-reactive cells showed that, in comparison with the saline injected rats, the administration of BrdU impairs the proliferative behavior of neuroepithelial cells. The above-mentioned parameters were significantly reduced in rats injected with 100 μg/g b.w. of BrdU. The reduction was more evident using 200 μg/g b.w. The most severe effects were found with 300 μg/g b.w. of BrdU. The present findings also revealed that high doses of BrdU lead to the activation of apoptotic cellular events as evidenced by both terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and immunohistochemistry for active caspase-3. In comparison with saline rats, many apoptotic cells were found in rats injected with 100 μg/g b.w. of BrdU. The number of dying cells increased with 200 μg/g b.w. The most important number of apoptotic cells were observed in animals injected with 300 μg/g b.w. of BrdU. Ultrastructural studies confirmed the presence of neuroblasts at different stages of apoptosis.