Skip to Content
Merck
CN
  • Enhancing WNT Signaling Restores Cortical Neuronal Spine Maturation and Synaptogenesis in Tbr1 Mutants.

Enhancing WNT Signaling Restores Cortical Neuronal Spine Maturation and Synaptogenesis in Tbr1 Mutants.

Cell reports (2020-04-16)
Siavash Fazel Darbandi, Sarah E Robinson Schwartz, Emily Ling-Lin Pai, Amanda Everitt, Marc L Turner, Benjamin N R Cheyette, A Jeremy Willsey, Matthew W State, Vikaas S Sohal, John L R Rubenstein
ABSTRACT

Tbr1 is a high-confidence autism spectrum disorder (ASD) gene encoding a transcription factor with distinct pre- and postnatal functions. Postnatally, Tbr1 conditional knockout (CKO) mutants and constitutive heterozygotes have immature dendritic spines and reduced synaptic density. Tbr1 regulates expression of several genes that underlie synaptic defects, including a kinesin (Kif1a) and a WNT-signaling ligand (Wnt7b). Furthermore, Tbr1 mutant corticothalamic neurons have reduced thalamic axonal arborization. LiCl and a GSK3β inhibitor, two WNT-signaling agonists, robustly rescue the dendritic spines and the synaptic and axonal defects, suggesting that this could have relevance for therapeutic approaches in some forms of ASD.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Potassium chloride, BioXtra, ≥99.0%
Sigma-Aldrich
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, ≥97.0%
Sigma-Aldrich
Adenosine 5′-triphosphate magnesium salt, ≥95%, bacterial
Sigma-Aldrich
Sodium bicarbonate, ACS reagent, ≥99.7%
Sigma-Aldrich
Sodium chloride, ACS reagent, ≥99.0%
Sigma-Aldrich
Calcium chloride dihydrate, ACS reagent, ≥99%
Sigma-Aldrich
D-(+)-Glucose, ACS reagent
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
Guanosine 5′-triphosphate sodium salt hydrate, ≥90% (HPLC)
Sigma-Aldrich
Magnesium chloride hexahydrate, ACS reagent, 99.0-102.0%