Skip to Content
Merck
CN
  • LINC00675 activates androgen receptor axis signaling pathway to promote castration-resistant prostate cancer progression.

LINC00675 activates androgen receptor axis signaling pathway to promote castration-resistant prostate cancer progression.

Cell death & disease (2020-08-18)
Mengfei Yao, Xiaolei Shi, Yue Li, Yutian Xiao, William Butler, Yongqiang Huang, Leilei Du, Tianqi Wu, Xiaojie Bian, Guohai Shi, Dingwei Ye, Guohui Fu, Jianhua Wang, Shancheng Ren
ABSTRACT

The development of prostate cancer (PCa) from androgen-deprivation therapy (ADT) sensitive to castration resistant (CRPC) seriously impacts life quality and survival of PCa patients. Emerging evidence shows that long noncoding RNAs (lncRNAs) play vital roles in cancer initiation and progression. However, the inherited mechanisms of how lncRNAs participate in PCa progression and treatment resistance remain unclear. Here, we found that a long noncoding RNA LINC00675 was upregulated in androgen-insensitive PCa cell lines and CRPC patients, which promoted PCa progression both in vitro and in vivo. Knockdown of LINC00675 markedly suppressed tumor formation and attenuated enzalutamide resistance of PCa cells. Mechanistically, LINC00675 could directly modulate androgen receptor's (AR) interaction with mouse double minute-2 (MDM2) and block AR's ubiquitination by binding to it. Meanwhile, LINC00675 could bind to GATA2 mRNA and stabilize its expression level, in which GATA2 could act as a co-activator in the AR signaling pathway. Notably, we treated subcutaneous xenografts models with enzalutamide and antisense oligonucleotides (ASO) targeting LINC00675 in vivo and found that targeting LINC00675 would benefit androgen-deprivation-insensitive models. Our findings disclose that the LINC00675/MDM2/GATA2/AR signaling axis is a potential therapeutic target for CRPC patients.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
3,3′,5-Triiodo-L-thyronine, ≥95% (HPLC), powder
Sigma-Aldrich
Polybrene Infection / Transfection Reagent, A highly efficient method of gene transfer into mammalian cells leveraging infection with retroviral vectors.
Sigma-Aldrich
apo-Transferrin human, powder, ≥98% (agarose gel electrophoresis)
Sigma-Aldrich
Adenine hemisulfate salt, powder, BioReagent, suitable for cell culture