Skip to Content
Merck
CN
All Photos(6)

Documents

Safety Information

G4511

Sigma-Aldrich

β-Glucosidase from almonds

greener alternative

lyophilized powder, 10-50 units/mg solid

Synonym(s):

β-D-Glucoside glucohydrolase

Sign Into View Organizational & Contract Pricing


About This Item

CAS Number:
Enzyme Commission number:
EC Number:
MDL number:
UNSPSC Code:
12352204
NACRES:
NA.54

form

lyophilized powder

Quality Level

specific activity

10-50 units/mg solid

mol wt

50-75 kDa

greener alternative product characteristics

Waste Prevention
Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

impurities

salt, essentially free

greener alternative category

storage temp.

2-8°C

Looking for similar products? Visit Product Comparison Guide

General description

β-Glucosidase from almonds belongs to the family 1 of the glycoside hydrolases. Almonds contain prunasin hydrolases (PH) and amygdalin hydrolase. Nine types of PHs are associated with almonds. PHs have signal peptide sequence and correspond to molecular weight in the range 50 to 75 kDa. PHs also have ITENG, NEP and INKKGIEYY motifs conserved and have N-glycosylation sites.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency and waste prevention when used in cellulosic ethanol research. For more information see the article in biofiles.

Application

β-Glucosidase from almonds has been used:
  • in enzyme inhibition studies by 1,5-dideoxy-1,5-imino-d-xylitol(DIX) derivates
  • as a control in for comparison of soybean isofavone glycosides degradation by β-Glucosidase from Talaromyce leycettanus
  • as a medium component during saccharification and fermentation of yeast

β-glucosidase is also used in the synthesis of glucosides and fucosides with various potential applications in pharmaceutical, cosmetic and detergent industries, hydrolytic removal of aglycone moiety from flavonoid and isoflavonoid glycosides, flavor enhancement of fruit juices and wine, and biosynthesis of oligosaccharides.

Biochem/physiol Actions

Prunasin hydrolase (PH) is a β-glucosidase that degrades prunasin to mandelonitrile and glucose. Amygdalin hydrolase hydrolyzes amygdalin to prunasin and glucose. β-Glucosidase is mesostable and is sensitive to temperature at 60 °C and above. It is highly sensitive to high pressure.
βglucosidase is involved in the hydrolysis of β-glycosidic bonds connecting carbohydrate residues in β-D-glycosides. They convert cellobiose and cellooligosaccharides produced by the endo and exoglucanases to glucose.

Unit Definition

One unit will liberate 1.0 μmole of glucose from salicin per min at pH 5.0 at 37 °C.

Preparation Note

Chromatographically purified

Pictograms

Health hazard

Signal Word

Danger

Hazard Statements

Precautionary Statements

Hazard Classifications

Resp. Sens. 1

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Information

动植物源性产品

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

The stability of almond beta-glucosidase during combined high pressure-thermal processing: a kinetic study
Terefe N, et al.
Applied Microbiology and Biotechnology, 97(7), 2917-2928 (2013)
Galaihalage K S Ananda et al.
Planta, 255(2), 51-51 (2022-01-28)
Australian native species of sorghum contain negligible amounts of dhurrin in their leaves and the cyanogenesis process is regulated differently under water-stress in comparison to domesticated sorghum species. Cyanogenesis in forage sorghum is a major concern in agriculture as the
J E Busch et al.
Microbiology (Reading, England), 143(6), 2021-2026 (1997-06-01)
Thermophilic actinomycetes establish themselves as numerically dominant bacterial populations in selected high temperature environments by virtue of their exoenzymic ability to degrade the complex polysaccharides in thermogenic plant biomass. When Thermomonospora curvata and Thermomonospora fusca were grown on a mixture
M N Sohail et al.
Planta, 255(4), 74-74 (2022-03-01)
Droughted sorghum had higher concentrations of ROS in both wildtype and dhurrin-lacking mutants. Dhurrin increased in wildtype genotypes with drought. Dhurrin does not appear to mitigate oxidative stress in sorghum. Sorghum bicolor is tolerant of high temperatures and prolonged droughts.
A Novel Thermostable GH3 beta-Glucosidase from Talaromyce leycettanus with Broad Substrate Specificity and Significant Soybean Isoflavone Glycosides-Hydrolyzing Capability
Li X, et al.
BioMed Research International, 2018 (2018)

Articles

Probiotics exhibit an inhibitory effect on pathogens, help prevent chronic intestinal inflammatory diseases or atopic syndromes, and support the immune system.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service