Skip to Content

For important updates on recent policy changes, please click here for more details.

Merck
CN
All Photos(8)

Key Documents

A9414

Sigma-Aldrich

Agarose, low gelling temperature

BioReagent, for molecular biology

Synonym(s):

3,6-Anhydro-α-L-galacto-β-D-galactan, LMP agarose, 2-Hydroxyethyl agarose

Sign Into View Organizational & Contract Pricing

Select a Size

10 MG
CN¥1,606.86

CN¥1,606.86


Please contact Customer Service for Availability

Request a Bulk Order

Select a Size

Change View
10 MG
CN¥1,606.86

About This Item

CAS Number:
MDL number:
UNSPSC Code:
41105317
NACRES:
NA.25

CN¥1,606.86


Please contact Customer Service for Availability

Request a Bulk Order

biological source

algae (red)

Quality Level

grade

Molecular Biology
for molecular biology

product line

BioReagent

form

powder

EEO

≤0.10

mp

≤65 °C

transition temp

congealing temperature 26-30 °C

gel strength

≥200 g/cm2 (1% gel)

anion traces

sulfate (SO42-): ≤0.10%

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
AP175AP124AP128
conjugate

unconjugated

conjugate

unconjugated

conjugate

unconjugated

conjugate

unconjugated

species reactivity

human

species reactivity

human

species reactivity

mouse

species reactivity

mouse

technique(s)

ELISA: suitable, western blot: suitable, immunoprecipitation (IP): suitable

technique(s)

ELISA: suitable, immunoprecipitation (IP): suitable, western blot: suitable

technique(s)

ELISA: suitable, immunoprecipitation (IP): suitable, western blot: suitable

technique(s)

ELISA: suitable, immunoprecipitation (IP): suitable, western blot: suitable

antibody form

affinity purified immunoglobulin

antibody form

affinity purified immunoglobulin

antibody form

affinity purified immunoglobulin

antibody form

F(ab′)2 fragment of affinity isolated antibody

clone

polyclonal

clone

polyclonal

clone

polyclonal

clone

polyclonal

General description

Agarose is a component of agar that is naturally found in the cell wall of red algae. It is hydrophilic and has a high gelling property. It is most commonly employed for gel electrophoresis, to form porous gels to analyze DNA, RNA, or proteins by size. When a voltage is applied to the system the charged nucleic acids migrate through the agarose gel and are separated by size. The stability and gelling properties of agarose make it versitile and it can be used for many other applications in research such as, plaque and comet assays, and even as a scaffolding agent to name a few.

Application

Low-gelling agarose has been used in research:
  • for gel electrophoresis, low melting temperature is ideal for DNA extraction from gel -gel scaffold material for tissue engineering using BMSCs[1]
  • to embed tissues in 5% agarose for immunohistology[2]
  • for preparation of collagen-agarose co-gels to study collagen-matrix interactions in soft tissues[3]
  • single-celled gel electrophoresis (comet assay)[4]
  • for in-vivo 3-D imaging of zebrafish larvae immobilized on agarose strips[5]

Features and Benefits

  • BioReagent suitable for gel electrophoresis
  • Band separation range: 200 bp - 25 kB - low gelling temperature is ideal for cell culture and viral plaque assays
  • low melting point (LMP) gel is compatible with several DNA recovery methods: phenol/chloroform extractions, recovery columns, electroelution, Beta-Agarase, and freeze/squeeze
  • Guaranteed quality tested for use in molecular biology, free of DNase and RNase

Analysis Note

The following is a list of properties associated with our agaroses:
Sulfate content - used as an indicator of purity, since sulfate is the major ionic group present.
Gel strength - the force that must be applied to a gel to cause it to fracture.
Gel point - the temperature at which an aqueous agarose solution forms a gel as it cools. Agarose solutions exhibit hysteresis in the liquid-to-gel transition - that is, their gel point is not the same as their melting temperature.
Electroendosmosis (EEO) - a movement of liquid through the gel. Anionic groups in an agarose gel are affixed to the matrix and cannot move, but dissociable counter cations can migrate toward the cathode in the matrix, giving rise to EEO. Since electrophoretic movement of biopolymers is usually toward the anode, EEO can disrupt separations because of internal convection.

Other Notes

For additional information on our range of Biochemicals, please complete this form.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

  • Choose from one of the most recent versions:

    Certificates of Analysis (COA)

    Lot/Batch Number

    Don't see the Right Version?

    If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

    Already Own This Product?

    Find documentation for the products that you have recently purchased in the Document Library.

    Visit the Document Library

    Mechanical and structural contribution of non-fibrillar matrix in uniaxial tension: a collagen-agarose co-gel model
    Lake SP and Barocas VH
    Annals of Biomedical Engineering, 39(7), 1891-1903 (2011)
    Modification and comparison of three Gracilaria spp. agarose with methylation for promotion of its gelling properties
    Gu Y, et al.
    Chemistry Central Journal, 11(1), 104-104 (2017)
    Evaluation of different scaffolds for BMP-2 genetic orthopedic tissue engineering
    Xu XL et al.
    Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 75, 289-303 (2005)
    Nanoparticles containing allotropes of carbon have genotoxic effects on glioblastoma multiforme cells
    Hinzmann M et al.
    International journal of nanomedicine, 15, 2409-2417 (2014)
    Wioletta Skronska-Wasek et al.
    American journal of respiratory and critical care medicine, 196(2), 172-185 (2017-03-01)
    Chronic obstructive pulmonary disease (COPD), in particular emphysema, is characterized by loss of parenchymal alveolar tissue and impaired tissue repair. Wingless and INT-1 (WNT)/β-catenin signaling is reduced in COPD; however, the mechanisms thereof, specifically the role of the frizzled (FZD)

    Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

    Contact Technical Service