Skip to Content
Merck
CN

931950

Sodium perchlorate

≥99.9% trace metals basis

Synonym(s):

Sodium Perchlorate, Hyperchloric acid sodium salt

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Empirical Formula (Hill Notation):
ClNaO4
CAS Number:
Molecular Weight:
122.44
UNSPSC Code:
12352302
NACRES:
NA.23
MDL number:
Assay:
≥99.9% trace metals basis
Grade:
anhydrous
Form:
powder
Solubility:
H2O: 209 g/dL at 15 °C
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

Sodium perchlorate, ≥99.9% trace metals basis

SMILES string

[Na+].[Cl](=O)(=O)(=O)[O-]

InChI

1S/ClHO4.Na/c2-1(3,4)5;/h(H,2,3,4,5);/q;+1/p-1

InChI key

BAZAXWOYCMUHIX-UHFFFAOYSA-M

grade

anhydrous

assay

≥99.9% trace metals basis

form

powder

reaction suitability

core: sodium

impurities

≤1000 ppm (trace metals analysis)

pH

6.0-8.0 (25 °C, 5%, aq.sol.)

mp

482 °C

solubility

H2O: 209 g/dL at 15 °C

anion traces

chloride (Cl-): ≤30 ppm
sulfate (SO42-): ≤20 ppm

cation traces

Fe: ≤5 ppm
K: ≤500 ppm

Quality Level

Looking for similar products? Visit Product Comparison Guide

Application

The major application of anhydrous sodium perchlorate is as an electrolyte in sodium-ion batteries. It is popular because of its solubility in ethers and carbonates, its wide electrochemical stability window (e.g. from 0 to 5 V vs Na+/Na in propylene carbonate, triglyme, or diethylcarbonate)[1], and its compatibility with a wide range of materials. It has been used in batteries with hard-carbon anodes[2], mesoporous carbon anodes[3], sodium cobalt oxide cathodes (NaxCoO2)[4], sodium vanadium oxide cathodes (NaxVO2)[5], titanium dioxide cathodes[6], and emerging materials like high-entropy layered oxide cathodes[7].

General description

Anhydrous sodium perchlorate is a white crystalline solid. It is hygroscopic and absorbs water to form its monohydrate. Anhydrous sodium perchlorate is highly soluble in water, and soluble in a range of polar organic solvents such as methanol, ethanol, acetone, carbonates (including ethylene carbonate, dimethyl carbonate, propylene carbonate, and diethyl carbonate), and ethers (including dimethoxyethane, tetrahydrofuran, and triethylene glycol dimethyl ether). It is insoluble in benzene, chloroform, and toluene.

Packaging

10 g in glass bottle
25 g in glass bottle

signalword

Danger

Hazard Classifications

Acute Tox. 4 Oral - Eye Irrit. 2 - Ox. Sol. 1 - STOT RE 2

target_organs

Thyroid

Storage Class

5.1A - Strongly oxidizing hazardous materials

wgk

WGK 1

Regulatory Information

易制爆化学品
危险化学品
This item has

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Jia Ding et al.
ACS nano, 7(12), 11004-11015 (2013-11-07)
We demonstrate that peat moss, a wild plant that covers 3% of the earth's surface, serves as an ideal precursor to create sodium ion battery (NIB) anodes with some of the most attractive electrochemical properties ever reported for carbonaceous materials.
Marie Guignard et al.
Nature materials, 12(1), 74-80 (2012-11-13)
Layered oxides are the subject of intense studies either for their properties as electrode materials for high-energy batteries or for their original physical properties due to the strong electronic correlations resulting from their unique structure. Here we present the detailed
R Berthelot et al.
Nature materials, 10(1), 74-80 (2010-12-15)
Sodium layered oxides NaxCoO2 form one of the most fascinating low-dimensional and strongly correlated systems; in particular P2–NaxCoO2 exhibits various single-phase domains with different Na+/vacancy patterns depending on the sodium concentration. Here we used sodium batteries to clearly depict the
Gianluca Longoni et al.
Nano letters, 17(2), 992-1000 (2016-12-28)
Rechargeable sodium-ion batteries are becoming a viable alternative to lithium-based technology in energy storage strategies, due to the wide abundance of sodium raw material. In the past decade, this has generated a boom of research interest in such systems. Notwithstanding
Chenglong Zhao et al.
Angewandte Chemie (International ed. in English), 59(1), 264-269 (2019-10-18)
Material innovation on high-performance Na-ion cathodes and the corresponding understanding of structural chemistry still remain a challenge. Herein, we report a new concept of high-entropy strategy to design layered oxide cathodes for Na-ion batteries. An example of layered O3-type NaNi0.12

Articles

Discover the role of electrolytes in sodium-ion batteries, to enhance performance, safety, and sustainability in energy storage solutions.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service