Sign In to View Organizational & Contract Pricing.
Select a Size
About This Item
Empirical Formula (Hill Notation):
C19H30N10O2
CAS Number:
Molecular Weight:
430.51
UNSPSC Code:
12352200
MDL number:
NACRES:
NA.21
Product Name
BTTAA, ≥95%
SMILES string
[n]1(nnc(c1)CN(Cc3nn[n](c3)C(C)(C)C)Cc2nn[n](c2)CC(=O)O)C(C)(C)C
InChI
1S/C19H30N10O2/c1-18(2,3)28-11-15(21-24-28)8-26(7-14-10-27(23-20-14)13-17(30)31)9-16-12-29(25-22-16)19(4,5)6/h10-12H,7-9,13H2,1-6H3,(H,30,31)
InChI key
MGQYHUDOWOGSQI-UHFFFAOYSA-N
assay
≥95%
form
solid
reaction suitability
reaction type: click chemistry
availability
available only in USA
storage temp.
2-8°C
Application
BTTAA is a next-generation, water-soluble ligand for the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) that dramatically accelerates reaction rates and suppresses cell cytotoxicity. The biocompatibility and fast kinetics of BTTAA are advancements from water-insoluble TBTA and are desirable for bio conjugation in diverse chemical biology experiments.
Other Notes
Biocompatible click chemistry enabled compartment-specific pH measurement inside E. coli
Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling
Metabolic labeling of fucosylated glycoproteins in Bacteroidales species
Increasing the Efficacy of Bioorthogonal Click Reactions for Bioconjugation: A Comparative Study
Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling
Metabolic labeling of fucosylated glycoproteins in Bacteroidales species
Increasing the Efficacy of Bioorthogonal Click Reactions for Bioconjugation: A Comparative Study
signalword
Danger
hcodes
Hazard Classifications
Self-react. C
Storage Class
5.2 - Organic peroxides and self-reacting hazardous materials
wgk
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Samra Obeid et al.
Chemical communications (Cambridge, England), 48(67), 8320-8322 (2012-07-07)
Modified nucleotides play a paramount role in many cutting-edge biomolecular techniques. The present structural study highlights the plasticity and flexibility of the active site of a DNA polymerase while incorporating non-polar "Click-able" nucleotide analogs and emphasizes new insights into rational
Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling.
Chayasith Uttamapinant et al.
Angewandte Chemie (International ed. in English), 51(24), 5852-5856 (2012-05-05)
Yongxian Xu et al.
Angewandte Chemie (International ed. in English), 57(15), 3949-3953 (2018-02-14)
Membrane voltage is an important biophysical signal that underlies intercellular electrical communications. A fluorescent voltage indicator is presented that enables the investigation of electrical signaling at high spatial resolution. The method is built upon the site-specific modification of microbial rhodopsin
Maiyun Yang et al.
Angewandte Chemie (International ed. in English), 51(31), 7674-7679 (2012-07-06)
Live-cell pH measurements: An environment-sensitive fluorophore (green) was site-specifically introduced on HdeA, an acid-resistant chaperone showing pH-mediated conformational changes under low pH conditions. A survey of the attachment sites led to the discovery of one position on HdeA at which
Christen Besanceney-Webler et al.
Bioorganic & medicinal chemistry letters, 21(17), 4989-4992 (2011-06-17)
Members of the Bacteroidales order are among the most abundant gram-negative bacteria of the human colonic microbiota. These species decorate their cell-surface glycoproteins with fucosylated glycans, which are believed to play important roles in host intestinal colonization. Currently, there is
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service