Skip to Content
Merck
CN
All Photos(2)

Documents

Safety Information

805238

Sigma-Aldrich

FK 102 Co(II) PF6 salt

Synonym(s):

Greatcell Solar®, tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(II) di[hexafluorophosphate]

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C24H21CoF12N9P2
CAS Number:
Molecular Weight:
784.35
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

Assay

98%

Quality Level

form

powder

mp

362 °C

SMILES string

F[P-](F)(F)(F)(F)F.F[P-](F)(F)(F)(F)F.N1(C2=NC=CC=C2)N=CC=C1.C3(N4C=CC=N4)=CC=CC=N3.C5(N6C=CC=N6)=CC=CC=N5.[Co+2]

InChI

1S/3C8H7N3.Co.2F6P/c3*1-2-5-9-8(4-1)11-7-3-6-10-11;;2*1-7(2,3,4,5)6/h3*1-7H;;;/q;;;+2;2*-1

InChI key

MLELXRWOHQBFBO-UHFFFAOYSA-N

Application

Use this cobalt complexes to increase photovoltages of liquid electrolyte cells substantially or to achieve ultrahigh performance with solid state photovoltaic devices.
FK102 cobalt complexes offer guaranteed performance, high reproducibility, consistent results, and are of highest purity. In comparison to triiodide-based redox electrolytes, cobalt complexes in general increase photovoltages and particularly at lower light levels (e.g. for indoor applications), significantly increase device power output.
Recommended use:
In liquid-based electrolytes: typically 0.15-0.2M of Co(II) and ca. 0.05M Co(II)
In solid-state photovoltaic cells: up to 10 weight % added to the hole transport material system.

Legal Information

Product of Greatcell Solar Materials Pty Ltd.
Greatcell Solar is a registered trademark of Greatcell SolarMaterials Pty Ltd.
Dyesol is a registered trademark of Greatcell Solar
Greatcell Solar is a registered trademark of Greatcell Solar

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - Skin Sens. 1 - STOT SE 3

Target Organs

Respiratory system

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Regulatory Information

新产品

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Teck Ming Koh et al.
ChemSusChem, 7(7), 1909-1914 (2014-05-23)
In this work, we report a new cobalt(III) complex, tris[2-(1H-pyrazol-1-yl)pyrimidine]cobalt(III) tris[bis(trifluoromethylsulfonyl)imide] (MY11), with deep redox potential (1.27 V vs NHE) as dopant for 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD). This dopant possesses, to the best of our knowledge, the deepest redox potential among all
Edoardo Mosconi et al.
Journal of the American Chemical Society, 134(47), 19438-19453 (2012-11-02)
We report a combined experimental and computational investigation to understand the nature of the interactions between cobalt redox mediators and TiO(2) surfaces sensitized by ruthenium and organic dyes, and their impact on the performance of the corresponding dye-sensitized solar cells
Julian Burschka et al.
Nature, 499(7458), 316-319 (2013-07-12)
Following pioneering work, solution-processable organic-inorganic hybrid perovskites-such as CH3NH3PbX3 (X = Cl, Br, I)-have attracted attention as light-harvesting materials for mesoscopic solar cells. So far, the perovskite pigment has been deposited in a single step onto mesoporous metal oxide films
Sandra M Feldt et al.
Physical chemistry chemical physics : PCCP, 15(19), 7087-7097 (2013-04-05)
Regeneration and recombination kinetics was investigated for dye-sensitized solar cells (DSCs) using a series of different cobalt polypyridine redox couples, with redox potentials ranging between 0.34 and 1.20 V vs. NHE. Marcus theory was applied to explain the rate of

Articles

Dye-sensitized solar cells (DSCs) are 3rd generation solar cells combining the promise of high efficiency with low production costs.

Next generation solar cells have the potential to achieve conversion efficiencies beyond the Shockley-Queisser (S-Q) limit while also significantly lowering production costs.

Dr. Perini and Professor Correa-Baena discuss the latest research and effort to obtain higher performance and stability of perovskite materials.

For several decades, the need for an environmentally sustainable and commercially viable source of energy has driven extensive research aimed at achieving high efficiency power generation systems that can be manufactured at low cost.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service