Skip to Content
Merck
CN
All Photos(4)

Key Documents

704121

Sigma-Aldrich

Carbon nanotube, single-walled

(7,6) chirality, ≥90% carbon basis (≥77% as carbon nanotubes), 0.83 nm average diameter, avg. no. of layers, 1

Synonym(s):

CHASM, CNT, Signis® SG76, SWCNT, SWNT, Single wall carbon nanotube

Sign Into View Organizational & Contract Pricing


About This Item

CAS Number:
MDL number:
UNSPSC Code:
12352103
NACRES:
NA.23

Quality Level

description

G/D Ratio: ≥15 (Raman 633nm)
Median length: 1 μm

Assay

≥90% carbon basis (≥77% as carbon nanotubes)

form

powder (freeze-dried)

feature

avg. no. of layers 1

manufacturer/tradename

Signis® SG76

surface area

≥700 m2/g

impurities

≤5 wt. % Moisture content

average diameter

0.83 nm

mp

3652-3697 °C (lit.)

density

1.7-1.9 g/cm3 at 25 °C (lit.)

bulk density

0.1 g/cm3

SMILES string

[C]

InChI

1S/C

InChI key

OKTJSMMVPCPJKN-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Produced using CHASM′s patented CoMoCAT technology, Signis® SG76 is selectively enriched in (7,6) chirality.
Tube diameter determined from an optical absorbance spectrum and AFM.

Application

Carbon nanotube, single-walled (SWNT) belongs to the class of carbonaceous materials with excellent physiochemical, thermo-mechanical and electrochemical properties. This material can be used in a variety of sustainable energy applications such as solar cells, photocatalysis, thin film conductors, field effect transistors (FETs), biosensor, gas sensor, supercapacitor and nanomechanical resonators.
Suitable for use in coatings for printed electronics, photovoltaics, medical applications.SWNTs (7,6 chirality) was used to prepare SWNT buckypapers, which were used as electrocatalyst supports for the electro-oxidation of methanol.SWNTs on poly methyl methacrylate (PMMA) substrates may be used as transducers for electrochemical microfluidic sensing.

Preparation Note

CoMoCAT Catalytic Chemical Vapor Deposition (CVD) Method

Legal Information

CHASM is a trademark of Chasm Advanced Materials
CoMoCAT is a trademark of Chasm Advanced Materials
Signis is a registered trademark of Chasm Advanced Materials

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

  1. Which document(s) contains shelf-life or expiration date information for a given product?

    If available for a given product, the recommended re-test date or the expiration date can be found on the Certificate of Analysis.

  2. How do I get lot-specific information or a Certificate of Analysis?

    The lot specific COA document can be found by entering the lot number above under the "Documents" section.

  3. How do I find price and availability?

    There are several ways to find pricing and availability for our products. Once you log onto our website, you will find the price and availability displayed on the product detail page. You can contact any of our Customer Sales and Service offices to receive a quote.  USA customers:  1-800-325-3010 or view local office numbers.

  4. What is the Department of Transportation shipping information for this product?

    Transportation information can be found in Section 14 of the product's (M)SDS.To access the shipping information for this material, use the link on the product detail page for the product. 

  5. How are these single-walled carbon nanotubes produced?

    These single-walled carbon nanotubes are produced by CoMoCAT® Catalytic Chemical Vapor Deposition (CVD).  Processing is done to remove amorphous carbon, and HF (aq) is used to remove the silica support and some metals.

  6. Are these single-walled carbon nanotubes surface modified?

    No, these single-walled carbon nanotubes do not have surface modifications.

  7. My question is not addressed here, how can I contact Technical Service for assistance?

    Ask a Scientist here.

Natalia Vladimirovna Kamanina et al.
Sensors (Basel, Switzerland), 18(9) (2018-09-13)
A potassium bromide (KBr) material, which has been widely used as the key element in Fourier spectrometers and as the output window of the IR-lasers, was studied via applying carbon nanotubes in order to modify the potassium bromide surface. The
Chiral-Selective Growth of Single-Walled Carbon Nanotubes on Lattice-Mismatched Epitaxial Cobalt Nanoparticles.
He M, et al.
Scientific Reports, 3(1460) null
Two-dimensional gel electrophoresis and mass spectrometry in studies of nanoparticle-protein interactions.
Karlsson H, et al.
Gel Electrophoresis-Advanced Techniques (2012)
etal impurities provide useful tracers for identifying exposures to airborne single-wall carbon nanotubes released from work-related processes
Rasmussen PE, et al.
Journal of Physics. Conference Series, 429 (2013)
Single-walled carbon nanotube buckypapers as electrocatalyst supports for methanol oxidation.
Sieben JM, et al.
Journal of Power Sources, 242, 7-14 (2013)

Articles

The CoMoCAT® method of single-walled carbon nanotube (SWNT) synthesis yields high purity SWNTs with specific chiralities and narrow distributions of tube diameters.

Single-Walled Carbon Nanotubes synthesized by the Super-Growth Method & their properties & applications, including dispersing SGCNTs, SGCNT-polymer composites & SGCNT-metal composites are discussed.

Review the potential of self-assembled multilayer gate dielectric films fabricated from silane precursors for organic, inorganic, and transparent TFT and for TFT circuitry and OLED displays.

Recent advancements in paper-based sensing platforms offer cost-effective clinical diagnostics with microfluidic channels and colorimetric or electrochemical detection zones.

See All

Protocols

Surfactant-assisted dispersion of single-walled carbon nanotubes for debundling or exfoliation in dispersion procedures.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service