Skip to Content

尊敬的客户:

目前国际形势复杂多变,关税政策尚不明朗,这可能对我们的产品价格产生一定影响。在此情况下,我们希望就订单事宜与您进行友好沟通。

基于当前的不确定性,如果您选择在此期间下单,我们将保留根据实际情况调整价格的权利。同时,我们也理解市场变化可能给您带来的困扰,因此如果在订单实际发货前因关税政策变动导致价格出现较大波动,默克将与您进行协商讨论并视情况对订单进行调整或取消。

关于应对近期政策变化的重要更新,请点击此处查看详情。

Merck
CN

637262

Sigma-Aldrich

Titanium(IV) oxide, rutile

nanopowder, <100 nm particle size, 99.5% trace metals basis

Synonym(s):

TiO2 rutile, rutile titania, Titanium dioxide

Sign Into View Organizational & Contract Pricing

Select a Size

100 μL
CN¥5,074.24

CN¥5,074.24


Please contact Customer Service for Availability

Request a Bulk Order

Select a Size

Change View
100 μL
CN¥5,074.24

About This Item

Linear Formula:
TiO2
CAS Number:
Molecular Weight:
79.87
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

CN¥5,074.24


Please contact Customer Service for Availability

Request a Bulk Order

Assay

99.5% trace metals basis

form

nanopowder

diam. × L

~10 nm × 40 nm

surface area

50 m2/g

particle size

<100 nm

density

4.17 g/mL at 25 °C (lit.)

bulk density

0.06‑0.10 g/mL

application(s)

battery manufacturing

SMILES string

O=[Ti]=O

InChI

1S/2O.Ti

Looking for similar products? Visit Product Comparison Guide

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
610023610024610020
feature

Extruder Set with Block

feature

Extruder Set without Block

feature

-

feature

-

General description

Rutile titanium(IV) oxide, also called titanium dioxide, is a fine powder with a particle size less than 100 nm. This titanium adopts the rutile crystal structure and is a white, opaque, crystalline solid with a high refractive index. It is widely used as a pigment in paints, plastics, paper, and cosmetics. Rutile titanium dioxide nanopowder has a high surface area, making it more reactive and effective in a range of applications. It is resistant to heat and chemical attack, making it suitable for use in high-temperature and corrosive environments.

Application

  • A study on titanium dioxide nanoparticles synthesized from titanium isopropoxide under SILAR-induced gel method: Transition from anatase to rutile structure: This research explores the synthesis and phase transition of titanium dioxide nanoparticles from anatase to rutile structure using the SILAR-induced gel method (AC Nkele et al., 2020).
  • Synthesis of rutile TiO2 nanostructures by single step hydrothermal route and its characterization: This article describes the synthesis of rutile TiO2 nanostructures using a single-step hydrothermal method and their characterization (SB Wategaonkar et al., 2020).
  • Monolayer Intermixed Oxide Surfaces: Fe, Ni, Cr, and V Oxides on Rutile TiO2(011): The study investigates the formation of mixed oxide layers on rutile TiO2(011) and their structural properties (S Halpegamage et al., 2016).
  • Mechanism, thermodynamics and kinetics of rutile leaching process by sulfuric acid reactions: This research examines the dissolution of rutile in sulfuric acid, focusing on the thermodynamics and kinetics of the process (AV Dubenko et al., 2020).
  • Kinetics of anatase transition to rutile TiO2 from titanium dioxide precursor powders synthesized by a sol-gel process: This paper studies the phase transition kinetics of anatase to rutile TiO2 from sol-gel synthesized precursor powders (CL Wang et al., 2016).

Features and Benefits

Possesses improved photocatalytic activity.

Other Notes

May contain up to 5 wt. % Silicon dioxide as a surface coating.

Contains small amount of anatase.

Storage Class Code

13 - Non Combustible Solids

WGK

nwg

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Suxin Gui et al.
Journal of agricultural and food chemistry, 61(37), 8959-8968 (2013-08-24)
TiO₂ nanoparticles (NPs) are used in the food industry but have potential toxic effects in humans and animals. TiO₂ NPs impair renal function and cause oxidative stress and renal inflammation in mice, associated with inhibition of nuclear factor erythroid-2-related factor
Roberta Tassinari et al.
Nanotoxicology, 8(6), 654-662 (2013-07-10)
The study explored possible reproductive and endocrine effects of short-term (5 days) oral exposure to anatase TiO2 nanoparticles (0, 1, 2 mg/kg body weight per day) in rat. Nanoparticles were characterised by scanning electron microscopy (SEM) and transmission electron microscopy
D Minetto et al.
Environment international, 66, 18-27 (2014-02-11)
The innovative properties of nanomaterials make them suitable for various applications in many fields. In particular, TiO2 nanoparticles (nTiO2) are widely used in paints, in cosmetics and in sunscreens that are products accessible to the mass market. Despite the great
Nabila Haddou et al.
Chemosphere, 107, 304-310 (2014-01-28)
The Gliding Arc Discharge (GAD) is an efficient non-thermal plasma technique able to degrade organic compounds dispersed in water at atmospheric pressure. The degradation of the organometallic lead acetate (PbAc) in aqueous solution was performed by two distinct plasmageneous processes:
Elisa Moschini et al.
Toxicology letters, 222(2), 102-116 (2013-08-03)
Metal oxide NPs are abundantly produced in nanotech industries and are emitted in several combustion processes, suggesting the need to characterize their toxic impact on the human respiratory system. The acute toxicity and the morphological changes induced by copper oxide

Articles

Dye-sensitized solar cells directly convert sunlight to electricity

Dye-sensitized solar cells (DSSCs) attract attention for high performance and potential low-cost production in solar energy.

Operation principle and market dominance of single crystalline silicon solar cells.

Titanium dioxide applications: Semiconducting material characteristics and diverse functionalities.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service