Skip to Content
Merck
CN
All Photos(1)

Key Documents

799289

Sigma-Aldrich

Titanium dioxide

nanotubes, 25 nm average diameter, powder

Synonym(s):

Titania nanotubes, Titanium oxide nanopowder

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
TiO2
CAS Number:
EC Number:
MDL number:
UNSPSC Code:
12352302
NACRES:
NA.23

form

nanotubes
powder

Quality Level

average diameter

25 nm

bp

2972 °C

mp

1843 °C

application(s)

battery manufacturing

SMILES string

[Ti](=O)=O

InChI

1S/2O.Ti

InChI key

GWEVSGVZZGPLCZ-UHFFFAOYSA-N

Application

One-dimensional nanostructures of metal oxides exhibit exotic properties such as high electron mobility, low carrier recombination rate, high surface to volume ratio, excellent surface activity etc. Owing to these outstanding properties TiO2 nanotubes find applications in dye sensitized solar cells and photocatalysis [, ].

Storage Class Code

13 - Non Combustible Solids

WGK

nwg

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Poulomi Roy et al.
Angewandte Chemie (International ed. in English), 50(13), 2904-2939 (2011-03-12)
TiO(2) is one of the most studied compounds in materials science. Owing to some outstanding properties it is used for instance in photocatalysis, dye-sensitized solar cells, and biomedical devices. In 1999, first reports showed the feasibility to grow highly ordered
Synthesis and characterization of titania nanotube arrays by electrochemical method for dye sensitized solar cells
Archives of Applied Science Research, 5(5), 28-28 (2013)

Articles

TiO2 exhibits wide band gap semiconductor and memristor properties electronically, with high opacity and UV absorbance optically.

Catalytic water splitting produces hydrogen crucial for renewable energy, petroleum refining, and chemical industry applications like methanol production.

Controlled synthesis of metal clusters regulates ligands and atoms, advancing metal nanomaterial synthesis.

Next generation solar cells have the potential to achieve conversion efficiencies beyond the Shockley-Queisser (S-Q) limit while also significantly lowering production costs.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service