Skip to Content
Merck
CN

483028

3,4-Ethylenedioxythiophene

97%

Synonym(s):

2,3-Dihydrothieno[3,4-b]-1,4-dioxin, EDOT

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Empirical Formula (Hill Notation):
C6H6O2S
CAS Number:
Molecular Weight:
142.18
NACRES:
NA.23
PubChem Substance ID:
UNSPSC Code:
12352103
MDL number:
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

3,4-Ethylenedioxythiophene, 97%

InChI

1S/C6H6O2S/c1-2-8-6-4-9-3-5(6)7-1/h3-4H,1-2H2

SMILES string

C1COc2cscc2O1

InChI key

GKWLILHTTGWKLQ-UHFFFAOYSA-N

assay

97%

refractive index

n20/D 1.5765 (lit.)

bp

193 °C (lit.)

density

1.331 g/mL at 25 °C (lit.)

storage temp.

2-8°C

Application

EDOT can be polymerized to form poly(3,4-ethylenedioxythiophene) (PEDOT) for use as an electrochromic polymer (EC) based coating for a variety of applications like solid state organic electrochemical supercapacitors (OESCs), electrochromic devices (ECDs), and carbon nanotubes (CNTs) based electrochemical devices for diabetes monitoring.
It can be used:
  • As a reductant in a one-pot synthesis of gold nanoparticles from HAuCl4 (254169).
  • As a starting material used in palladium-catalyzed mono- and bis-arylation reactions.
  • In the synthesis of conjugated polymers and copolymers, with potential optical applications.

General description

3,4-Ethylenedioxythiophene (EDOT) is an electro-active conductive monomer with a thiol group that combines an electron donor and electron acceptor in a donor-acceptor-donor arrangement.
Monomer used in the synthesis of conducting polymers.

pictograms

Skull and crossbones

signalword

Danger

Hazard Classifications

Acute Tox. 3 Dermal - Acute Tox. 4 Oral - Eye Irrit. 2

Storage Class

6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

wgk

WGK 2

flash_point_f

219.2 °F - closed cup

flash_point_c

104 °C - closed cup

ppe

Eyeshields, Faceshields, Gloves, type ABEK (EN14387) respirator filter


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Aiva Simaite et al.
Nanotechnology, 28(2), 025502-025502 (2016-12-03)
During cyclic actuation, conducting polymer based artificial muscles are often creeping from the initial movement range. One of the likely reasons of such behaviour is unbalanced charging during conducting polymer oxidation and reduction. To improve the actuation reversibility and subsequently
Zaid Aqrawe et al.
Polymers, 12(8) (2020-07-30)
The fabrication of stretchable conductive material through vapor phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) is presented alongside a method to easily pattern these materials with nanosecond laser structuring. The devices were constructed from sheets of vapor phase polymerized PEDOT doped with
Fei Li et al.
Advanced science (Weinheim, Baden-Wurttemberg, Germany), 6(20), 1901051-1901051 (2019-10-23)
The rapid development of microelectronics has equally rapidly increased the demand for miniaturized energy storage devices. On-chip microsupercapacitors (MSCs), as promising power candidates, possess great potential to complement or replace electrolytic capacitors and microbatteries in various applications. However, the areal
Hnin Yin Yin Nyein et al.
Science advances, 5(8), eaaw9906-eaaw9906 (2019-08-28)
Recent technological advancements in wearable sensors have made it easier to detect sweat components, but our limited understanding of sweat restricts its application. A critical bottleneck for temporal and regional sweat analysis is achieving uniform, high-throughput fabrication of sweat sensor
Hongmin Wang et al.
Nature communications, 11(1), 3882-3882 (2020-08-13)
Fired brick is a universal building material, produced by thousand-year-old technology, that throughout history has seldom served any other purpose. Here, we develop a scalable, cost-effective and versatile chemical synthesis using a fired brick to control oxidative radical polymerization and

Articles

Advancements in bioelectronics, incorporating self-healing materials for wearable devices, and measuring bioelectric signals to assess physiological parameters.

Conjugated polymers offer charge transport between inorganic, electrically conducting metals and organic, proton-conducting biological systems.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service