Skip to Content
Merck
CN

481793

Nickel oxide

Ni(II), ≥99.995% trace metals basis

Synonym(s):

Mononickel oxide, Nickel Oxide Sinter 75, Nickel oxide, Nickel(II) oxide, Nickelous oxide

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Linear Formula:
NiO
CAS Number:
Molecular Weight:
74.69
UNSPSC Code:
12352303
PubChem Substance ID:
NACRES:
NA.23
EC Number:
215-215-7
MDL number:
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

Nickel(II) oxide, ≥99.995% trace metals basis

SMILES string

[Ni]=O

InChI

1S/Ni.O

InChI key

GNRSAWUEBMWBQH-UHFFFAOYSA-N

assay

≥99.995% trace metals basis

form

solid

color

dark green

density

6.67 g/mL at 25 °C (lit.)

application(s)

battery manufacturing

Looking for similar products? Visit Product Comparison Guide

Application


  • Incorporation of Nanocatalysts for the Production of Bio-Oil from Staphylea holocarpa Wood.: This research explores the application of nanocatalysts, including Nickel(II) oxide, in the production of bio-oil, showcasing its role in enhancing the energy yield and efficiency of the bio-oil production process (Li et al., 2022).


pictograms

Health hazardExclamation mark

signalword

Danger

Hazard Classifications

Aquatic Chronic 4 - Carc. 1A Inhalation - Skin Sens. 1 - STOT RE 1 Inhalation

target_organs

Lungs

Storage Class

6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

wgk

WGK 1

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Faceshields, Gloves, type P3 (EN 143) respirator cartridges


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Elizabeth A Gibson et al.
Physical chemistry chemical physics : PCCP, 15(7), 2411-2420 (2013-01-10)
Photoactive NiO electrodes for cathodic dye-sensitised solar cells (p-DSCs) have been prepared with thicknesses ranging between 0.4 and 3.0 μm by spray-depositing pre-formed NiO nanoparticles on fluorine-doped tin oxide (FTO) coated glass substrates. The larger thicknesses were obtained in sequential
Salvador B Muñoz et al.
Inorganic chemistry, 51(23), 12660-12668 (2012-11-13)
The synthesis and characterization of new tris(carbene)borate ligand precursors containing substituted benzimidazol-2-ylidene and 1,3,4-triazol-2-ylidene donor groups, as well as a new tris(imidazol-2-ylidene)borate ligand precursor are reported. The relative donor strengths of the tris(carbene)borate ligands have been evaluated by the position
Neda Mazinanian et al.
Regulatory toxicology and pharmacology : RTP, 65(1), 135-146 (2012-11-13)
Differences in surface oxide characteristics and extent of nickel release have been investigated in two thoroughly characterized micron-sized (mainly <4 μm) nickel metal powders and a nickel oxide bulk powder when immersed in two different synthetic fluids, artificial sweat (ASW-pH
Huaixiang Li et al.
Biosensors & bioelectronics, 47, 225-230 (2013-04-16)
A novel photoelectrochemical hydrogen peroxide (H2O2) sensor was constructed with platinum (Pt) and nickel hydroxyl-oxide (NiOOH) double layers modified n-silicon electrode (NiOOH/Pt/n-n(+)-Si). About 40nm Pt layer and about 100nm Ni layer were successively coated on the front surface of n-n(+)-Si
Liqiang Luo et al.
Colloids and surfaces. B, Biointerfaces, 102, 307-311 (2012-09-26)
A highly sensitive and selective nonenzymatic glucose sensor based on electrodepositing NiO nanoparticles on ordered mesoporous carbon (named as NiO/OMC) modified glassy carbon electrode (GCE) was constructed. The synthesized OMC was characterized by X-ray diffraction, and the morphology images of

Articles

As with all types of fuel cells, a Solid Oxide Fuel Cell (SOFC) is capable of efficiently transforming chemical energy into electrical energy.

The prevailing strategies for heat and electric-power production that rely on fossil and fission fuels are having a negative impact on the environment and on our living conditions.

The diversity of applications and nanostructured materials accessible using ultrasonic spray methods are highlighted in this article.

Professor Chen (Nankai University, China) and his team explain the strategies behind their recent record-breaking organic solar cells, reaching a power conversion efficiency of 17.3%.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service