Skip to Content
Merck
CN
All Photos(4)

Key Documents

181986

Sigma-Aldrich

Poly(ethylene oxide)

average MV 100,000 (nominal), powder, hydroxyl, BHT as inhibitor

Synonym(s):

Polyethylene oxide, PEO

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
(-CH2CH2O-)n
CAS Number:
MDL number:
UNSPSC Code:
12352104
PubChem Substance ID:
NACRES:
NA.23

Product Name

Poly(ethylene oxide), average Mv 100,000 (nominal), powder

form

powder

Quality Level

mol wt

average Mv 100,000 (nominal)

contains

200-500 ppm BHT as inhibitor

refractive index

n20/D 1.4539

viscosity

12-50 cP, 5 % in H2O(25 °C, Brookfield)(lit.)

transition temp

Tg −67 °C
Tm 65 °C

density

1.13 g/mL at 25 °C

Ω-end

hydroxyl

α-end

hydroxyl

SMILES string

[H]OCCO

InChI

1S/C2H6O2/c3-1-2-4/h3-4H,1-2H2

InChI key

LYCAIKOWRPUZTN-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Poly(ethylene oxide) is a non-ionic hydrophilic linear polymer. It can be prepared by catalytic polymerization of ethylene oxide. Owing to its hydration and swelling properties, it is widely used in controlled drug delivery systems and bioadhesive materials.

Application

PEO can be used to:
  • Prepare polymer brushes with unique wormlike conformation which can be used in cancer drug delivery systems.
  • Synthesize polymer electrolytes for solid-state batteries and fuel cells.
  • Prepare biodegradable PEO/Ag nanocomposites forbiomedical and food packaging applications.

Features and Benefits

  • High water solubility
  • Non-toxicity
  • Rapid hydration
  • Insensitive to pH of the physiological system

Storage Class Code

11 - Combustible Solids

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

  1. Which document(s) contains shelf-life or expiration date information for a given product?

    If available for a given product, the recommended re-test date or the expiration date can be found on the Certificate of Analysis.

  2. How do I get lot-specific information or a Certificate of Analysis?

    The lot specific COA document can be found by entering the lot number above under the "Documents" section.

  3. What is the solubility of Poly(ethylene oxide), Product 181986?

    According to the chemicals encyclopedia published by the Royal Society of Chemistry:13th Edition, this product is soluble in water and many organic solvents.

  4. What are the endgroups of this particular Poly(ethylene oxide), Product 181986?

    According to our supplier, the end groups of this product are hydroxy groups.

  5. What is the polydispersity of Poly(ethylene oxide), Product 181986?

    Unfortunately, our supplier has not determined the polydispersity of this product and it is not part of our specifications.

  6. How do I find price and availability?

    There are several ways to find pricing and availability for our products. Once you log onto our website, you will find the price and availability displayed on the product detail page. You can contact any of our Customer Sales and Service offices to receive a quote.  USA customers:  1-800-325-3010 or view local office numbers.

  7. What is the Department of Transportation shipping information for this product?

    Transportation information can be found in Section 14 of the product's (M)SDS.To access the shipping information for this material, use the link on the product detail page for the product. 

  8. My question is not addressed here, how can I contact Technical Service for assistance?

    Ask a Scientist here.

Alexandre Goyon et al.
Electrophoresis, 39(16), 2083-2090 (2018-05-19)
The determination of mAb critical quality attributes (CQA) is crucial for their successful application in health diseases. A generic CZE method was developed for the high-resolution separation of various mAb charge variants, which are often recognized as important CQA. A
Wang, X.-L., et al.
Jiangsu Huagong, 32, 27-27 (2004)
Yeonsu Jung et al.
Proceedings of the National Academy of Sciences of the United States of America, 118(3) (2021-01-13)
Mud nests built by swallows (Hirundinidae) and phoebes (Sayornis) are stable granular piles attached to cliffs, walls, or ceilings. Although these birds have been observed to mix saliva with incohesive mud granules, how such biopolymer solutions provide the nest with
D D Smyth et al.
Cardiovascular drugs and therapy, 4(1), 297-300 (1990-02-01)
Previous studies have demonstrated that Separan AP-30, a drag-reducing polymer, significantly decreased the formation of atherosclerotic plaques in rabbits fed a high-cholesterol diet. Furthermore, Separan AP-273, a polymer similar to but longer than Separan AP-30, markedly increased cardiac output in
M Patel Geeta et al.
Current drug delivery, 6(2), 159-165 (2009-05-20)
Carbamazepine indicated for the control of epilepsy, undergoes extensive hepatic first-pass metabolism after oral administration. A vaginal dosage form of carbamazepine is not commercially available. Conventional suppository having poor retention in the vaginal tract, as they are removed in a

Articles

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

Designing biomaterial scaffolds mimicking complex living tissue structures is crucial for tissue engineering and regenerative medicine advancements.

Related Content

This capabilities video explores our Contract manufacturing (CMO) expertise including our global supply chain, ISO 13485 manufacturing sites, quality systems and regulatory guidance for clinical device and IVD production.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service