Skip to Content
Merck
CN
  • Lactate produced during labor modulates uterine inflammation via GPR81 (HCA

Lactate produced during labor modulates uterine inflammation via GPR81 (HCA

American journal of obstetrics and gynecology (2016-09-13)
Ankush Madaan, Mathieu Nadeau-Vallée, Jose Carlos Rivera, Dima Obari, Xin Hou, Estefania Marin Sierra, Sylvie Girard, David M Olson, Sylvain Chemtob
ABSTRACT

Uterine inflammatory processes trigger prolabor pathways and orchestrate on-time labor onset. Although essential for successful labor, inflammation needs to be regulated to avoid uncontrolled amplification and resolve postpartum. During labor, myometrial smooth muscle cells generate ATP mainly via anaerobic glycolysis, resulting in accumulation of lactate. Aside from its metabolic function, lactate has been shown to activate a G protein-coupled receptor, GPR81, reported to regulate inflammation. We therefore hypothesize that lactate produced during labor may act via GPR81 in the uterus to exert in a feedback manner antiinflammatory effects, to resolve or mitigate inflammation. We sought to investigate the role of lactate produced during labor and its receptor, GPR81, in regulating inflammation in the uterus. We investigated the expression of GPR81 in the uterus and the pharmacological role of lactate acting via GPR81 during labor, using shRNA-GPR81 and GPR81 (1) Uterine lactate levels increased substantially from 2 to 9 mmol/L during labor. (2) Immunohistological analysis revealed expression of GPR81 in the uterus with high expression in myometrium. (3) GPR81 expression increased during gestation, and peaked near labor. (4) In primary myometrial smooth muscle cell and ex vivo uteri from wild-type mice, lactate decreased interleukin-1β-induced transcription of key proinflammatory Il1b, Il6, Ccl2, and Pghs2; suppressive effects of lactate were not observed in cells and tissues from GPR81 Collectively, our data uncover a novel link between the anaerobic glycolysis and the control of uterine inflammation wherein the high levels of lactate produced during labor act on uterine GPR81 to down-regulate key proinflammatory genes. This discovery may represent a novel feedback mechanism to regulate inflammation during labor, and conveys a potential rationale for the use of GPR81 agonists to attenuate inflammation and resulting preterm birth.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
Triton X-100, for molecular biology