Skip to Content
Merck
CN
  • Engineered protease inhibitors based on sunflower trypsin inhibitor-1 (SFTI-1) provide insights into the role of sequence and conformation in Laskowski mechanism inhibition.

Engineered protease inhibitors based on sunflower trypsin inhibitor-1 (SFTI-1) provide insights into the role of sequence and conformation in Laskowski mechanism inhibition.

The Biochemical journal (2015-05-20)
Simon J de Veer, Joakim E Swedberg, Muharrem Akcan, K Johan Rosengren, Maria Brattsand, David J Craik, Jonathan M Harris
ABSTRACT

Laskowski inhibitors regulate serine proteases by an intriguing mode of action that involves deceiving the protease into synthesizing a peptide bond. Studies exploring naturally occurring Laskowski inhibitors have uncovered several structural features that convey the inhibitor's resistance to hydrolysis and exceptional binding affinity. However, in the context of Laskowski inhibitor engineering, the way that various modifications intended to fine-tune an inhibitor's potency and selectivity impact on its association and dissociation rates remains unclear. This information is important as Laskowski inhibitors are becoming increasingly used as design templates to develop new protease inhibitors for pharmaceutical applications. In this study, we used the cyclic peptide, sunflower trypsin inhibitor-1 (SFTI-1), as a model system to explore how the inhibitor's sequence and structure relate to its binding kinetics and function. Using enzyme assays, MD simulations and NMR spectroscopy to study SFTI variants with diverse sequence and backbone modifications, we show that the geometry of the binding loop mainly influences the inhibitor's potency by modulating the association rate, such that variants lacking a favourable conformation show dramatic losses in activity. Additionally, we show that the inhibitor's sequence (including both the binding loop and its scaffolding) influences its potency and selectivity by modulating both the association and the dissociation rates. These findings provide new insights into protease inhibitor function and design that we apply by engineering novel inhibitors for classical serine proteases, trypsin and chymotrypsin and two kallikrein-related peptidases (KLK5 and KLK14) that are implicated in various cancers and skin diseases.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Water, for embryo transfer, sterile-filtered, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Water, PCR Reagent
Sigma-Aldrich
E-Toxate Water, endotoxin, free
Sigma-Aldrich
Water, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Dimethyl sulfoxide-d6, "Special HOH", ≥99.9 atom % D
Sigma-Aldrich
Dimethyl sulfoxide-d6, 99.9 atom % D
Sigma-Aldrich
Water, for molecular biology, sterile filtered
Sigma-Aldrich
Dimethyl sulfoxide-d6, 99.9 atom % D, contains 0.03 % (v/v) TMS
Sigma-Aldrich
Dimethyl sulfoxide-d6, 99.9 atom % D, contains 1 % (v/v) TMS
Sigma-Aldrich
Water, deuterium-depleted, ≤1 ppm (Deuterium oxide)
Sigma-Aldrich
Dimethyl sulfoxide-d6, anhydrous, 99.9 atom % D
Sigma-Aldrich
Dimethyl sulfoxide-d6, "100%", 99.96 atom % D
Sigma-Aldrich
Dimethyl sulfoxide-d6, 99.5 atom % D
Sigma-Aldrich
Dimethyl sulfoxide-d6, "100%", 99.96 atom % D, contains 0.03 % (v/v) TMS
Sigma-Aldrich
Water, for cell biology, sterile ultrafiltered
Sigma-Aldrich
Water, BioPerformance Certified
Sigma-Aldrich
Water, Nuclease-Free Water, for Molecular Biology
Sigma-Aldrich
Water-16O, ≥99.94 atom % 16O