Skip to Content
Merck
CN
  • Reproducible, stable and fast electrochemical activity from easy to make graphene on copper electrodes.

Reproducible, stable and fast electrochemical activity from easy to make graphene on copper electrodes.

Physical chemistry chemical physics : PCCP (2015-10-20)
Concha Bosch-Navarro, Zachary P L Laker, Jonathan P Rourke, Neil R Wilson
ABSTRACT

The electrochemical activity of graphene is of fundamental importance to applications from energy storage to sensing, but has proved difficult to unambiguously determine due to the challenges innate to fabricating well defined graphene electrodes free from contamination. Here, we report the electrochemical activity of chemical vapour deposition (CVD) graphene grown on copper foil without further treatment, through appropriate choice of electrolyte. Fast electron transfer kinetics are observed for both inner and outer sphere redox couples with fully covered graphene on copper electrodes (k° = 0.014 ± 0.001 cm s(-1) or k° = 0.012 ± 0.001 cm s(-1) for potassium ferrocyanide(II) and hexaamineruthenium(III) chloride, respectively). Unlike highly oriented pyrolytic graphite electrodes, the electrochemical response of the graphene on copper electrodes is stable, with no apparent electrode fouling even with inner sphere redox couples, and reproducible independent of the time between growth and measurement. Comparison between fully covered electrodes, and partial coverage of graphene with varying graphene grain sizes (from roughly 50 μm to <10 μm) shows that in this instance the basal plane of graphene is electrochemically active. These CVD grown graphene on copper electrodes are quick, cheap and reproducible to make and hence provide a convenient platform for further investigation of graphene electrochemistry and the effect of covalent and non-covalent modification.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Potassium nitrate, BioXtra, ≥99.0%
Sigma-Aldrich
Potassium nitrate, BioReagent, suitable for cell culture, suitable for plant cell culture
Sigma-Aldrich
Potassium nitrate, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Potassium nitrate, puriss., meets analytical specification of Ph Eur, BP, USP, FCC, E252, 99.0-100.5%
Sigma-Aldrich
Potassium nitrate, ACS reagent, ≥99.0%
Sigma-Aldrich
Potassium nitrate, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99%
Sigma-Aldrich
Potassium nitrate, 99.99% trace metals basis
Sigma-Aldrich
Potassium nitrate, 99.999% trace metals basis
Sigma-Aldrich
Potassium carbonate, meets USP testing specifications
Sigma-Aldrich
Potassium hexacyanoferrate(II) trihydrate, BioUltra, ≥99.5% (RT)
Sigma-Aldrich
Potassium carbonate, BioUltra, anhydrous, ≥99.0% (T)
Sigma-Aldrich
Potassium carbonate, 99.995% trace metals basis
Sigma-Aldrich
Hexaammineruthenium(III) chloride, 98%
Sigma-Aldrich
Potassium carbonate, puriss. p.a., ACS reagent, anhydrous, ≥99.0% (T)
Sigma-Aldrich
Potassium carbonate, anhydrous, free-flowing, −325 mesh, Redi-Dri, reagent grade, ≥98%
Sigma-Aldrich
Potassium carbonate, ACS reagent, ≥99.0%
Sigma-Aldrich
Potassium carbonate, puriss., meets analytical specification of Ph. Helv., anhydrous, granulated, 99-101% (calc. to the dried substance)
Sigma-Aldrich
Potassium hexacyanoferrate(II) trihydrate, ReagentPlus®, ≥98.5%
Sigma-Aldrich
Potassium carbonate, BioXtra, ≥99.0%
Sigma-Aldrich
Potassium hexacyanoferrate(II) trihydrate, ACS reagent, 98.5-102.0%
Sigma-Aldrich
Potassium carbonate, ReagentPlus®, 99%
Sigma-Aldrich
Potassium carbonate, reagent grade, ≥98%, powder, −325 mesh
Sigma-Aldrich
Potassium carbonate, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, 99%
Sigma-Aldrich
Potassium carbonate, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99%
Sigma-Aldrich
Potassium hexacyanoferrate(II) trihydrate, ≥99.95% trace metals basis
Sigma-Aldrich
Potassium carbonate, anhydrous, powder, 99.99% trace metals basis