Skip to Content
Merck
CN
  • Comb-shaped conjugates comprising hydroxypropyl cellulose backbones and low-molecular-weight poly(N-isopropylacryamide) side chains for smart hydrogels: synthesis, characterization, and biomedical applications.

Comb-shaped conjugates comprising hydroxypropyl cellulose backbones and low-molecular-weight poly(N-isopropylacryamide) side chains for smart hydrogels: synthesis, characterization, and biomedical applications.

Bioconjugate chemistry (2010-02-25)
F J Xu, Y Zhu, F S Liu, J Nie, J Ma, W T Yang
ABSTRACT

Hydroxypropyl cellulose (HPC) possesses a lower critical solution temperature (LCST) above 40 °C, while the poly(N-isopropylacrylamide) (P(NIPAAm)) exhibits a LCST of about 32 °C. Herein, comb-shaped copolymer conjugates of HPC backbones and low-molecular-weight P(NIPAAm) side chains (HPC-g-P(NIPAAm) or HPN) were prepared via atom transfer radical polymerization (ATRP) from the bromoisobutyryl-functionalized HPC biopolymers. By changing the composition ratio of HPC and P(NIPAAm), the LCSTs of HPNs can be adjusted to be lower than the body temperature. The MTT assay from the HEK293 cell line indicated that HPNs possess reduced cytotoxicity. Some of the hydroxyl groups of HPNs were used as cross-linking sites for the preparation of stable HPN hydrogels. In comparison with the HPC hydrogels, the cross-linked HPN hydrogels possess interconnected pore structures and higher swelling ratios. The in vitro release kinetics of fluorescein isothiocyanate-labeled dextran and BSA (or dextran-FITC and BSA-FITC) as model drugs from the hydrogels showed that the HPN hydrogels are suitable for long-term sustained release of macromolecular drugs at body temperature.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydroxypropyl cellulose, average Mw ~80,000, average Mn ~10,000, powder, 20 mesh particle size (99% through)