Skip to Content

Dear Customer:

The current international situation is complex and volatile, and uncertain tariff policies may potentially impact our product prices. Given these uncertainties, we value your understanding regarding order-related matters.

If you decide to place an order during this period, we reserve the right to adjust the price based on the evolving situation. We understand that market changes may cause inconvenience. We will negotiate with you if there’s a significant price fluctuation due to tariff policy changes before the order’s actual delivery, and in such cases we may adjust or cancel the order as necessary.

We are planning system maintenance between Friday, Apr 11 at 9:00 PM CDT and Saturday, Apr 12 at 9:00 AM CDT. This will impact both web and offline transactions, including online orders, quotes, price and availability checks, and order status inquiries. We apologize for any inconvenience.

Merck
CN
  • Macromolecular association of ADP-ribosyltransferase and its correlation with enzymic activity.

Macromolecular association of ADP-ribosyltransferase and its correlation with enzymic activity.

The Biochemical journal (1990-08-15)
P I Bauer, K G Buki, A Hakam, E Kun
ABSTRACT

The macromolecular self-association of ADP-ribosyltransferase protein in solution was studied by several experimental techniques: quantitative gel filtration, electrophoretic analyses in non-denaturing gels, and cross-linking the enzyme protein with glutaraldehyde, dimethyl pimelimidate, dimethyl suberimidate, dimethyl 3,3'-dithiobisproprionimidate and tetranitromethane. The self-association of the polypeptide components obtained by plasmin digestion was also determined by using the above cross-linking agents. Monomers and cross-linked dimers of the enzyme protein, possessing enzymic activity, were separated in non-denaturing gels by electrophoresis. The basic polypeptide fragments, exhibiting molecular masses of 29 kDa and 36 kDa, self-associated, whereas the polypeptides with molecular masses of 56 kDa and 42 kDa associated only to a negligible extent, indicating that the peptide regions that also bind DNA and histones are probable sites of self-association in the intact enzyme molecule. Macromolecular association of the enzyme was indicated by a protein-concentration-dependent red-shift in protein fluorescence. The specific enzymic activity of the isolated ADP-ribosyltransferase depended on the concentration of the enzyme protein, and at 2.00 microM concentration the enzyme was self-inhibitory. Dilution of the enzyme protein to 30-40 nM resulted in a large increase in its specific activity. Further dilution to 1-3 nM coincided with a marked decrease of specific activity. Direct enzymic assays of electrophoretically separated monomers and cross-linked dimers demonstrated that the dimer appears to be the active molecular species that catalyses poly(ADP-ribose) synthesis. The NAD+ glycohydrolase activity of the enzyme was also dependent on protein concentration and was highest at 1-3 nM enzyme concentration, when polymerase activity was minimal, indicating that the monomeric enzyme behaved as a glycohydrolase, whereas poly(ADP-ribosyl)ation of enzyme molecules was maximal when the enzyme tends to be self-associated to the dimeric form.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
CAPSO, ≥99% anhydrous basis (titration)
Sign Into View Organizational & Contract Pricing
SKUPack SizeAvailabilityPriceQuantity
100 ea
Please contact Customer Service for Availability
CN¥2,249.01