- Biochemical and histopathological changes in nephrectomized mice.
Biochemical and histopathological changes in nephrectomized mice.
Renal failure is characterized by the retention of nitrogenous metabolites such as urea, creatinine (CTN) and other guanidino compounds (GCs), uric acid, and hippuric acid, which could be related to the clinical syndrome associated with renal insufficiency. A model of renal failure has been developed in male C57BL x Swiss-Webster mice using nephrectomy (NX) and/or arterial ligation. A sham group (group A) and two nephrectomized groups, group B (one kidney removed) and group C (one kidney removed and ligation of the contralateral anterior artery branch), were studied. Ten days postsurgery, morphological and functional indices of renal failure were investigated. Nephrectomized mice manifested features of renal failure like polyuria and wasting. CTN clearance (CTN[Cl]) decreased by +/-26% in group B and +/-33% in group C as compared with the control values. Marked increases in the plasma concentration of guanidinosuccinic acid ([GSA] fourfold) and guanidine ([G] twofold) were observed in the experimental animals. CTN and alpha-keto-delta-guanidinovaleric acid (alpha-keto-delta-GVA) reached levels of, respectively, 1.5-fold and twofold those of controls. Urinary GSA excretion increased and guanidinoacetic acid (GAA) excretion decreased about twofold in group C. GSA increases (2.6-fold) were also observed in the brain in group C, in addition to a significant increase of G (2.5-fold) and gamma-guanidinobutyric acid ([GBA] 1.5-fold). Finally, the extent of NX was found to be 45.2% in group B and 71.4% in group C. Light microscopy revealed an expansion and increase in cellularity of the mesangium of the glomeruli, particularly in group C. A significant correlation (r = .574, P < .0001) was found between CTN(Cl) and the degree of NX as calculated from the remaining functional area. These data suggest that the model can be used as a tool for further pathophysiological and/or behavioral investigations of renal failure.