Skip to Content
Merck
CN
  • Plasma synthesis of polymer-capped dye-sensitised anatase nanopowders for visible-light-driven hydrogen evolution.

Plasma synthesis of polymer-capped dye-sensitised anatase nanopowders for visible-light-driven hydrogen evolution.

ChemSusChem (2012-11-28)
Angela Kruth, Sven Hansen, Torsten Beweries, Volker Brüser, Klaus-Dieter Weltmann
ABSTRACT

Visible-light-driven photocatalysis is currently attracting a great deal of attention because of its potential application in solar water splitting. However, the development of efficient and durable catalyst systems is still a challenging problem. In Ru dye-sensitised TiO(2) nanopowders, catalyst performances are found to decline as a result of poor bonding of the dye molecule to the TiO(2) surface and subsequent detachment and self-aggregation of the dye. Our strategy to improve the stability of the dye-TiO(2) interface is the encapsulation of the dye/TiO(2) assembly in an amino-group-containing polyallylamine layer anchored to TiO(2). A low-pressure pulsed microwave discharge plasma polymerization process was employed to coat a commercial anatase nanopowder with a thin polyallylamine layer to nanoconfine the adsorbed dye molecules. Electron microscopy and UV/Vis spectroscopy was carried out to characterise the resulting encapsulated nanostructures. The long-term stability of the new nanomaterial as the photoactive component of a water reduction catalyst system for H(2) evolution investigated in a slurry reactor under visible-light irradiation showed stable evolution rates over a period of several days.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Poly(allylamine hydrochloride), average Mw 50,000
Sigma-Aldrich
Poly(allylamine hydrochloride), average Mw ~17,500 (GPC vs. PEG std.)
Sigma-Aldrich
Poly(allylamine) solution, 20 wt. % in H2O
Sigma-Aldrich
Poly(allylamine) solution, average Mw ~65,000, 10 wt. % in H2O