Skip to Content
Merck
CN
  • Spontaneous electrical activity and dendritic spine size in mature cerebellar Purkinje cells.

Spontaneous electrical activity and dendritic spine size in mature cerebellar Purkinje cells.

The European journal of neuroscience (2005-05-05)
Robin J Harvey, Laura Morando, Roberta Rasetti, Piergiorgio Strata
ABSTRACT

Previous experiments have shown that in the mature cerebellum both blocking of spontaneous electrical activity and destruction of the climbing fibres by a lesion of the inferior olive have a similar profound effect on the spine distribution on the proximal dendrites of the Purkinje cells. Many new spines develop that are largely innervated by parallel fibers. Here we show that blocking electrical activity leads to a significant decrease in size of the spines on the branchlets. We have also compared the size of the spines of the proximal dendritic domain that appear during activity block and after an inferior olive lesion. In this region also, the spines in the absence of activity are significantly smaller. In the proximal dendritic domain, the new spines that develop in the absence of activity are innervated by parallel fibers and are not significantly different in size from those of the branchlets, although they are shorter. Thus, the spontaneous activity of the cerebellar cortex is necessary not only to maintain the physiological spine distribution profile in the Purkinje cell dendritic tree, but also acts as a signal that prevents spines from shrinking.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
3-Acetylpyridine, 98%
Sigma-Aldrich
3-Acetylpyridine, ≥98%, FG